-
Notifications
You must be signed in to change notification settings - Fork 177
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #238 from eukaryo/wilcoxon-pruner-tsp-sa
Add an example of Wilcoxon pruner
- Loading branch information
Showing
3 changed files
with
183 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
name: pruners | ||
|
||
on: | ||
schedule: | ||
- cron: '0 15 * * *' | ||
pull_request: | ||
paths: | ||
- 'pruners/**' | ||
- '.github/workflows/wilcoxon_pruner.yml' | ||
|
||
jobs: | ||
examples: | ||
if: (github.event_name == 'schedule' && github.repository == 'optuna/optuna-examples') || (github.event_name != 'schedule') | ||
runs-on: ubuntu-latest | ||
strategy: | ||
matrix: | ||
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11'] | ||
|
||
steps: | ||
- uses: actions/checkout@v3 | ||
- name: setup-python${{ matrix.python-version }} | ||
uses: actions/setup-python@v4 | ||
with: | ||
python-version: ${{ matrix.python-version }} | ||
- name: Install (Python) | ||
run: | | ||
python -m pip install --upgrade pip | ||
pip install --progress-bar off -U setuptools | ||
pip install git+https://github.com/optuna/optuna.git | ||
python -c 'import optuna' | ||
pip install -r pruners/requirements.txt | ||
- name: Run examples | ||
run: | | ||
python pruners/wilcoxon_pruner_tsp_sa.py | ||
env: | ||
OMP_NUM_THREADS: 1 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
scipy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from dataclasses import dataclass | ||
import math | ||
import sys | ||
|
||
import numpy as np | ||
from numpy.linalg import norm | ||
import optuna | ||
|
||
|
||
@dataclass | ||
class SAOptions: | ||
max_iter: int = 10000 | ||
T0: float = 1.0 | ||
alpha: float = 2.0 | ||
patience: int = 50 | ||
|
||
|
||
def tsp_cost(vertices: np.ndarray, idxs: np.ndarray) -> float: | ||
return norm(vertices[idxs] - vertices[np.roll(idxs, 1)], axis=-1).sum() | ||
|
||
|
||
# Greedy solution for initial guess. | ||
def tsp_greedy(vertices: np.ndarray) -> np.ndarray: | ||
idxs = [0] | ||
for _ in range(len(vertices) - 1): | ||
dists_from_last = norm(vertices[idxs[-1], None] - vertices, axis=-1) | ||
dists_from_last[idxs] = np.inf | ||
idxs.append(np.argmin(dists_from_last)) | ||
return np.array(idxs) | ||
|
||
|
||
# A minimal implementation of TSP solver using simulated annealing on 2-opt neighbors. | ||
def tsp_simulated_annealing(vertices: np.ndarray, options: SAOptions) -> np.ndarray: | ||
|
||
def temperature(t: float): | ||
# t: 0 ... 1 | ||
return options.T0 * (1 - t) ** options.alpha | ||
|
||
N = len(vertices) | ||
|
||
idxs = tsp_greedy(vertices) | ||
cost = tsp_cost(vertices, idxs) | ||
best_idxs = idxs.copy() | ||
best_cost = cost | ||
remaining_patience = options.patience | ||
|
||
for iter in range(options.max_iter): | ||
|
||
i = np.random.randint(0, N) | ||
j = (i + 2 + np.random.randint(0, N - 3)) % N | ||
i, j = min(i, j), max(i, j) | ||
# Reverse the order of vertices between range [i+1, j]. | ||
|
||
# cost difference by 2-opt reversal | ||
delta_cost = ( | ||
-norm(vertices[idxs[(i + 1) % N]] - vertices[idxs[i]]) | ||
- norm(vertices[idxs[j]] - vertices[idxs[(j + 1) % N]]) | ||
+ norm(vertices[idxs[i]] - vertices[idxs[j]]) | ||
+ norm(vertices[idxs[(i + 1) % N]] - vertices[idxs[(j + 1) % N]]) | ||
) | ||
temp = temperature(iter / options.max_iter) | ||
if delta_cost <= 0.0 or np.random.random() < math.exp(-delta_cost / temp): | ||
# accept the 2-opt reversal | ||
cost += delta_cost | ||
idxs[i + 1 : j + 1] = idxs[i + 1 : j + 1][::-1] | ||
if cost < best_cost: | ||
best_idxs[:] = idxs | ||
best_cost = cost | ||
remaining_patience = options.patience | ||
|
||
if cost > best_cost: | ||
# If the best solution is not updated for "patience" iteratoins, | ||
# restart from the best solution. | ||
remaining_patience -= 1 | ||
if remaining_patience == 0: | ||
idxs[:] = best_idxs | ||
cost = best_cost | ||
remaining_patience = options.patience | ||
|
||
return best_idxs | ||
|
||
|
||
def make_dataset(num_vertex: int, num_problem: int, seed: int = 0) -> np.ndarray: | ||
rng = np.random.default_rng(seed=seed) | ||
return rng.random((num_problem, num_vertex, 2)) | ||
|
||
|
||
dataset = make_dataset( | ||
num_vertex=100, | ||
num_problem=50, | ||
) | ||
|
||
N_TRIALS = 50 | ||
|
||
# We set a very small number of SA iterations for demonstration purpose. | ||
# In practice, you should set a larger number of iterations. | ||
N_SA_ITER = 10000 | ||
count = 0 | ||
|
||
|
||
def objective(trial: optuna.Trial) -> float: | ||
global count | ||
options = SAOptions( | ||
max_iter=N_SA_ITER, | ||
T0=trial.suggest_float("T0", 0.01, 10.0, log=True), | ||
alpha=trial.suggest_float("alpha", 1.0, 10.0, log=True), | ||
patience=trial.suggest_int("patience", 10, 1000, log=True), | ||
) | ||
results = [] | ||
|
||
# For best results, shuffle the evaluation order in each trial. | ||
ordering = np.random.permutation(len(dataset)) | ||
for i in ordering: | ||
count += 1 | ||
result_idxs = tsp_simulated_annealing(vertices=dataset[i], options=options) | ||
result_cost = tsp_cost(dataset[i], result_idxs) | ||
results.append(result_cost) | ||
|
||
trial.report(result_cost, i) | ||
if trial.should_prune(): | ||
print( | ||
f"[{trial.number}] Pruned at {len(results)}/{len(dataset)}", | ||
file=sys.stderr, | ||
) | ||
# raise optuna.TrialPruned() | ||
|
||
# Return the current predicted value when pruned. | ||
# This is a workaround for the problem that | ||
# current TPE sampler cannot utilize pruned trials effectively. | ||
return sum(results) / len(results) | ||
|
||
print(f"[{trial.number}] Not pruned ({len(results)}/{len(dataset)})", file=sys.stderr) | ||
return sum(results) / len(results) | ||
|
||
|
||
if __name__ == "__main__": | ||
np.random.seed(0) | ||
sampler = optuna.samplers.TPESampler(seed=1) | ||
pruner = optuna.pruners.WilcoxonPruner(p_threshold=0.1) | ||
study = optuna.create_study(direction="minimize", sampler=sampler, pruner=pruner) | ||
study.enqueue_trial({"T0": 1.0, "alpha": 2.0, "patience": 50}) # default params | ||
study.optimize(objective, n_trials=N_TRIALS) | ||
print(f"The number of trials: {len(study.trials)}") | ||
print(f"Best value: {study.best_value} (params: {study.best_params})") | ||
print(f"Number of evaluations: {count} / {N_TRIALS * len(dataset)}") |