Skip to content
Change the repository type filter

All

    Repositories list

    • Jupyter Notebook
      0100Updated Dec 31, 2024Dec 31, 2024
    • Website for HCAI MMS
      HTML
      BSD 3-Clause "New" or "Revised" License
      7120Updated Dec 3, 2024Dec 3, 2024
    • Python
      3100Updated Oct 29, 2024Oct 29, 2024
    • Jupyter Notebook
      1000Updated Oct 9, 2024Oct 9, 2024
    • This repository hosts the code and the settings for the paper "Modular Debiasing of Latent User Representations in Prototype-based Recommender Systems" by Alessandro B. Melchiorre, Shahed Masoudian, Deepak Kumar, and Markus Schedl at ECML-PKDD'24.
      Python
      MIT License
      2100Updated Aug 27, 2024Aug 27, 2024
    • SBO

      Public
      This repository contains the source code for the paper: "Making Alice Appear Like Bob: A Probabilistic Preference Obfuscation Method For Implicit Feedback Recommendation Models" by Gustavo Escobedo, Marta Moscati, Peter Muellner, Simone Kopeinik, Dominik Kowald, Elisabeth Lex, Markus Schedl, ECML-PKDD, 2024 Research Track
      Python
      1000Updated Jul 4, 2024Jul 4, 2024
    • Source code corresponding to the paper : Escobedo, G, Ganhör, C., Brandl, S., Augstein, M., and Schedl, M. "Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training", (BIAS @ SIGIR 2024), Washington D.C., USA, July 2024.
      Python
      1000Updated Jun 18, 2024Jun 18, 2024
    • actr

      Public
      This repository hosts the code and the additional materials for the paper "Integrating the ACT-R Framework with Collaborative Filtering for Explainable Sequential Music Recommendation" by Marta Moscati, Christian Wallmann, Markus Reiter-Haas, Dominik Kowald, Elisabeth Lex, and Markus Schedl at RecSys 2023.
      Python
      1100Updated Jul 17, 2023Jul 17, 2023
    • ProtoMF

      Public
      This repository hosts the code and the additional materials for the paper "ProtoMF: Prototype-based Matrix Factorization for Effective and Explainable Recommendations" by Alessandro B. Melchiorre, Navid Rekabsaz, Christian Ganhör, and Markus Schedl at RecSys 2022.
      Python
      Apache License 2.0
      81000Updated Jan 11, 2023Jan 11, 2023