Skip to content

Kafkometry is a lightweight Apache Kafka metric visualizer created using Svelte/SvelteKit

Notifications You must be signed in to change notification settings

oslabs-beta/Kafkometry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kafkometry

Kafkometry is a lightweight Apache Kafka metric visualizer created using Svelte/SvelteKit.

Table of Contents

Features

kafkometry_2

  • Live monitoring of key Apache Kafka metrics
  • Metric component customization using Grafana Desktop
  • Authentication using Google auth
  • A lightweight and user friendly UI/UX built in Svelte/SvelteKit

View your metrics

  1. Active Connections
Screenshot 2023-07-26 at 11 22 54 AM
  1. Partition Count
Screenshot 2023-07-26 at 11 24 39 AM
  1. Successful Authentications
Screenshot 2023-07-26 at 11 24 56 AM
  1. Bytes Sent
Screenshot 2023-07-26 at 11 27 27 AM
  1. Records Received
Screenshot 2023-07-26 at 11 27 39 AM
  1. Bytes Received
Screenshot 2023-07-26 at 11 27 48 AM

System Design

Kafkometry System Design

Currently, the flow of data in our application is mapped by the diagram above. Our data flow begins with the Kafka cluster hosted on Confluent Cloud, with a Datagen connector that produces mock messages and events to the cloud-hosted cluster. Confluent Cloud conveniently has their own Confluent Cloud Metrics API, which exposes cluster metrics for availability at a specific HTTP endpoint. Prometheus is run with a prometheus.yml file, which is configured to set up Prometheus to scrape that exposed endpoint at a specific interval or rate. We then configure Grafana to set our local Prometheus instance as a data source, which allows the data that Prometheus scraped from the cloud-cluster to be available for visualization within Grafana. We then customize and configure Grafana dashboards, and embed them into our frontend application via iframes.

Current Implementation

As of launch, our product and demo is currently set up with local instances of Prometheus and Grafana set up with YAML files to connect to our Confluent Cloud cluster via a Confluent Cloud API Key and Secret. To run this demo on their respective machines we currently require users to:

  1. Host their clusters on Confluent Cloud
  2. Configure a Metrics Viewer Role
  3. Generate their own Cloud API Key and Secret
  4. Install and run their own local, configured Prometheus instance
  5. Create a Grafana Cloud account and select Prometheus as a data source
  6. Fork and clone this repo
  7. Customize and embed their own Grafana dashboards
  8. Run npm install and npm run dev

In its current state, there are a lot of steps that the user must complete to get Kafkometry up and running. Going forward, the Kafkometry team hopes to abstract many of these steps away to create a more seamless and intuitive user experience. We've thought about providing the necessary configuration YAML files to scrape from OUR Confluent Cloud cluster when running the users' own instances of Prometheus and Grafana so that our users will not have to create any accounts, but this still requires our users to install Prometheus on their own machine. Not to mention unsecure if we decided to post our prometheus.yml and Grafana configs that contain our Cloud API key and secret along with our Grafana credentials. Additionally, Confluent Cloud Metrics API has a rate limit on how often their endpoints can be scraped, therefore preventing the application from receiving realtime data. There's gotta be a better way!

Next Steps

For our next big patch, we have been working on containerizing our application with Docker! For demo purposes, we plan on spinning up a containerized cluster rather than hosting our cluster on Confluent Cloud to overcome the request rate limits imposed by Confluent Cloud Metrics API. We also plan on making the switch from using Grafana, to using Chart.js to design and render our own graphical interfaces for metrics for a superior user experience. With this containerized solution, our users can run the application off of images using a docker-compose.yaml (that we will provide) that can be run with a single docker-compose -up command, instead of downloading, configuring, and running their own instances of Prometheus, and eliminates the need to create their own Grafana account and dashboards.

Technologies Used

my-skills

Meet the Team

Name GitHub LinkedIn
Benjamin Dunn GitHub LinkedIn
Mitch Gruen GitHub LinkedIn
Alwin Zhao GitHub LinkedIn
Vincent Do GitHub LinkedIn

License

#MIT License

About

Kafkometry is a lightweight Apache Kafka metric visualizer created using Svelte/SvelteKit

Resources

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •