-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
introducing additional activations functions - leaky_rely, tanh and s…
…igmoid
- Loading branch information
1 parent
0b7ad2a
commit 9b055ee
Showing
8 changed files
with
564 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
use std::any::Any; | ||
use std::error::Error; | ||
|
||
use crate::block_helpers; | ||
use crate::feature_buffer; | ||
use crate::graph; | ||
use crate::graph::BlockGraph; | ||
use crate::model_instance; | ||
use crate::port_buffer; | ||
use crate::regressor; | ||
use regressor::BlockTrait; | ||
|
||
pub struct BlockLeakyRELU { | ||
pub num_inputs: usize, | ||
pub input_offset: usize, | ||
pub output_offset: usize, | ||
pub alpha: f32, | ||
} | ||
|
||
pub fn new_leaky_relu_block( | ||
bg: &mut BlockGraph, | ||
input: graph::BlockPtrOutput, | ||
) -> Result<graph::BlockPtrOutput, Box<dyn Error>> { | ||
let num_inputs = bg.get_num_output_values(vec![&input]); | ||
assert!(num_inputs != 0); | ||
let block = Box::new(BlockLeakyRELU { | ||
output_offset: usize::MAX, | ||
input_offset: usize::MAX, | ||
num_inputs: num_inputs, | ||
alpha: 0.3, // TODO consider how to extract this and make configurable | ||
}); | ||
let mut block_outputs = bg.add_node(block, vec![input])?; | ||
assert_eq!(block_outputs.len(), 1); | ||
Ok(block_outputs.pop().unwrap()) | ||
} | ||
|
||
impl BlockTrait for BlockLeakyRELU { | ||
fn as_any(&mut self) -> &mut dyn Any { | ||
self | ||
} | ||
|
||
#[inline(always)] | ||
fn forward_backward( | ||
&mut self, | ||
further_blocks: &mut [Box<dyn BlockTrait>], | ||
fb: &feature_buffer::FeatureBuffer, | ||
pb: &mut port_buffer::PortBuffer, | ||
update: bool, | ||
) { | ||
debug_assert!(self.output_offset != usize::MAX); | ||
debug_assert!(self.input_offset != usize::MAX); | ||
debug_assert!(self.num_inputs > 0); | ||
|
||
unsafe { | ||
for i in 0..self.num_inputs as usize { | ||
let x = *pb.tape.get_unchecked_mut(self.input_offset + i); | ||
if x < 0.0 { | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = self.alpha * x; | ||
} else { | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = x; | ||
} | ||
|
||
if x <= 0.0 { | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) = self.alpha; | ||
} else { | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) = 1.0; | ||
} | ||
} | ||
|
||
block_helpers::forward_backward(further_blocks, fb, pb, update); | ||
|
||
if update { | ||
for i in 0..self.num_inputs as usize { | ||
let gradient = *pb.tape.get_unchecked(self.output_offset + i); | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) *= gradient; | ||
} | ||
} | ||
} // unsafe end | ||
} | ||
|
||
fn forward( | ||
&self, | ||
further_blocks: &[Box<dyn BlockTrait>], | ||
fb: &feature_buffer::FeatureBuffer, | ||
pb: &mut port_buffer::PortBuffer, | ||
) { | ||
debug_assert!(self.output_offset != usize::MAX); | ||
debug_assert!(self.input_offset != usize::MAX); | ||
debug_assert!(self.num_inputs > 0); | ||
|
||
unsafe { | ||
for i in 0..self.num_inputs as usize { | ||
let x = *pb.tape.get_unchecked_mut(self.input_offset + i); | ||
if x < 0.0 { | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = self.alpha * x; | ||
} else { | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = x; | ||
} | ||
} | ||
block_helpers::forward(further_blocks, fb, pb); | ||
} // unsafe end | ||
} | ||
|
||
fn allocate_and_init_weights(&mut self, _mi: &model_instance::ModelInstance) {} | ||
|
||
fn get_num_output_values(&self, output: graph::OutputSlot) -> usize { | ||
assert!(output.get_output_index() == 0); | ||
return self.num_inputs; | ||
} | ||
|
||
fn get_num_output_slots(&self) -> usize { | ||
1 | ||
} | ||
|
||
fn set_input_offset(&mut self, input: graph::InputSlot, offset: usize) { | ||
assert!(input.get_input_index() == 0); | ||
self.input_offset = offset; | ||
} | ||
|
||
fn set_output_offset(&mut self, output: graph::OutputSlot, offset: usize) { | ||
assert!(output.get_output_index() == 0); | ||
self.output_offset = offset; | ||
} | ||
} | ||
|
||
mod tests { | ||
// Note this useful idiom: importing names from outer (for mod tests) scope. | ||
use super::*; | ||
use crate::assert_epsilon; | ||
use crate::block_misc; | ||
use crate::feature_buffer; | ||
use block_helpers::slearn2; | ||
use block_misc::Observe; | ||
|
||
fn fb_vec() -> feature_buffer::FeatureBuffer { | ||
feature_buffer::FeatureBuffer { | ||
label: 0.0, | ||
example_importance: 1.0, | ||
example_number: 0, | ||
lr_buffer: Vec::new(), | ||
ffm_buffer: Vec::new(), | ||
ffm_fields_count: 0, | ||
} | ||
} | ||
|
||
#[test] | ||
fn test_simple_positive() { | ||
let mut mi = model_instance::ModelInstance::new_empty().unwrap(); | ||
let mut bg = BlockGraph::new(); | ||
let input_block = block_misc::new_const_block(&mut bg, vec![2.0]).unwrap(); | ||
let leaky_relu_block = new_leaky_relu_block(&mut bg, input_block).unwrap(); | ||
block_misc::new_observe_block(&mut bg, leaky_relu_block, Observe::Forward, Some(1.0)) | ||
.unwrap(); | ||
bg.finalize(); | ||
bg.allocate_and_init_weights(&mi); | ||
|
||
let mut pb = bg.new_port_buffer(); | ||
|
||
let fb = fb_vec(); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 2.0); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 2.0); // leaky_relu doesn't learn | ||
} | ||
|
||
fn test_simple_negative() { | ||
let mi = model_instance::ModelInstance::new_empty().unwrap(); | ||
let mut bg = BlockGraph::new(); | ||
let input_block = block_misc::new_const_block(&mut bg, vec![-2.0]).unwrap(); | ||
let leaky_relu_block = new_leaky_relu_block(&mut bg, input_block).unwrap(); | ||
block_misc::new_observe_block(&mut bg, leaky_relu_block, Observe::Forward, Some(1.0)) | ||
.unwrap(); | ||
bg.finalize(); | ||
bg.allocate_and_init_weights(&mi); | ||
|
||
let mut pb = bg.new_port_buffer(); | ||
|
||
let fb = fb_vec(); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 0.0); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 0.0); // leaky_relu doesn't learn | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
use libm::expf; | ||
use std::any::Any; | ||
use std::error::Error; | ||
use crate::block_helpers; | ||
use crate::feature_buffer; | ||
use crate::graph; | ||
use crate::graph::BlockGraph; | ||
use crate::model_instance; | ||
use crate::port_buffer; | ||
use crate::regressor; | ||
use regressor::BlockTrait; | ||
|
||
pub struct BlockSigmoid { | ||
pub num_inputs: usize, | ||
pub input_offset: usize, | ||
pub output_offset: usize, | ||
} | ||
|
||
pub fn new_sigmoid_block( | ||
bg: &mut graph::BlockGraph, | ||
input: graph::BlockPtrOutput, | ||
) -> Result<graph::BlockPtrOutput, Box<dyn Error>> { | ||
let num_inputs = bg.get_num_output_values(vec![&input]); | ||
assert!(num_inputs != 0); | ||
let block = Box::new(BlockSigmoid { | ||
output_offset: usize::MAX, | ||
input_offset: usize::MAX, | ||
num_inputs: num_inputs, | ||
}); | ||
let mut block_outputs = bg.add_node(block, vec![input])?; | ||
assert_eq!(block_outputs.len(), 1); | ||
Ok(block_outputs.pop().unwrap()) | ||
} | ||
|
||
impl BlockTrait for BlockSigmoid { | ||
fn as_any(&mut self) -> &mut dyn Any { | ||
self | ||
} | ||
|
||
fn allocate_and_init_weights(&mut self, _mi: &model_instance::ModelInstance) {} | ||
|
||
fn get_num_output_slots(&self) -> usize { | ||
1 | ||
} | ||
|
||
fn get_num_output_values(&self, output: graph::OutputSlot) -> usize { | ||
assert!(output.get_output_index() == 0); | ||
return self.num_inputs; | ||
} | ||
|
||
fn set_input_offset(&mut self, input: graph::InputSlot, offset: usize) { | ||
assert!(input.get_input_index() == 0); | ||
self.input_offset = offset; | ||
} | ||
|
||
fn set_output_offset(&mut self, output: graph::OutputSlot, offset: usize) { | ||
assert!(output.get_output_index() == 0); | ||
self.output_offset = offset; | ||
} | ||
|
||
#[inline(always)] | ||
fn forward_backward( | ||
&mut self, | ||
further_blocks: &mut [Box<dyn BlockTrait>], | ||
fb: &feature_buffer::FeatureBuffer, | ||
pb: &mut port_buffer::PortBuffer, | ||
update: bool, | ||
) { | ||
debug_assert!(self.output_offset != usize::MAX); | ||
debug_assert!(self.input_offset != usize::MAX); | ||
debug_assert!(self.num_inputs > 0); | ||
|
||
unsafe { | ||
for i in 0..self.num_inputs as usize { | ||
let x = *pb.tape.get_unchecked_mut(self.input_offset + i); | ||
|
||
// for now doing the actual slow sigmoid computation. once we establish a baseline, | ||
// we can replace with a fast approximation or a lookup table | ||
if x < 0.0 { | ||
let epx = expf(x); | ||
let s = epx / (1.0 + epx); | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = s; | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) = s * (1.0 - s); | ||
} else { | ||
let s = 1.0 / (1.0 + expf(-x)); | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = s; | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) = s * (1.0 - s); | ||
} | ||
} | ||
|
||
block_helpers::forward_backward(further_blocks, fb, pb, update); | ||
|
||
if update { | ||
for i in 0..self.num_inputs as usize { | ||
let gradient = *pb.tape.get_unchecked(self.output_offset + i); | ||
*pb.tape.get_unchecked_mut(self.input_offset + i) *= gradient; | ||
} | ||
} | ||
} // unsafe end | ||
} | ||
|
||
fn forward( | ||
&self, | ||
further_blocks: &[Box<dyn BlockTrait>], | ||
fb: &feature_buffer::FeatureBuffer, | ||
pb: &mut port_buffer::PortBuffer, | ||
) { | ||
debug_assert!(self.output_offset != usize::MAX); | ||
debug_assert!(self.input_offset != usize::MAX); | ||
debug_assert!(self.num_inputs > 0); | ||
|
||
unsafe { | ||
for i in 0..self.num_inputs as usize { | ||
let x = *pb.tape.get_unchecked_mut(self.input_offset + i); | ||
*pb.tape.get_unchecked_mut(self.output_offset + i) = 1.0 / (1.0 + expf(-x)); | ||
} | ||
block_helpers::forward(further_blocks, fb, pb); | ||
} // unsafe end | ||
} | ||
} | ||
|
||
mod tests { | ||
// Note this useful idiom: importing names from outer (for mod tests) scope. | ||
use super::*; | ||
use crate::assert_epsilon; | ||
use crate::block_misc; | ||
use crate::feature_buffer; | ||
use block_helpers::slearn2; | ||
use block_misc::Observe; | ||
|
||
fn fb_vec() -> feature_buffer::FeatureBuffer { | ||
feature_buffer::FeatureBuffer { | ||
label: 0.0, | ||
example_importance: 1.0, | ||
example_number: 0, | ||
lr_buffer: Vec::new(), | ||
ffm_buffer: Vec::new(), | ||
ffm_fields_count: 0, | ||
} | ||
} | ||
|
||
#[test] | ||
fn test_simple_positive() { | ||
let mut mi = model_instance::ModelInstance::new_empty().unwrap(); | ||
let mut bg = BlockGraph::new(); | ||
let input_block = block_misc::new_const_block(&mut bg, vec![2.0]).unwrap(); | ||
let sigmoid_block = new_sigmoid_block(&mut bg, input_block).unwrap(); | ||
block_misc::new_observe_block(&mut bg, sigmoid_block, Observe::Forward, Some(1.0)).unwrap(); | ||
bg.finalize(); | ||
bg.allocate_and_init_weights(&mi); | ||
|
||
let mut pb = bg.new_port_buffer(); | ||
|
||
let fb = fb_vec(); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 2.0); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 2.0); // sigmoid doesn't learn | ||
} | ||
|
||
fn test_simple_negative() { | ||
let mi = model_instance::ModelInstance::new_empty().unwrap(); | ||
let mut bg = BlockGraph::new(); | ||
let input_block = block_misc::new_const_block(&mut bg, vec![-2.0]).unwrap(); | ||
let sigmoid_block = new_sigmoid_block(&mut bg, input_block).unwrap(); | ||
block_misc::new_observe_block(&mut bg, sigmoid_block, Observe::Forward, Some(1.0)).unwrap(); | ||
bg.finalize(); | ||
bg.allocate_and_init_weights(&mi); | ||
|
||
let mut pb = bg.new_port_buffer(); | ||
|
||
let fb = fb_vec(); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 0.0); | ||
assert_epsilon!(slearn2(&mut bg, &fb, &mut pb, true), 0.0); // sigmoid doesn't learn | ||
} | ||
} |
Oops, something went wrong.