Skip to content

Commit

Permalink
Merge branch 'main' into feat/desi_vocal_audio_tool
Browse files Browse the repository at this point in the history
  • Loading branch information
anuragts authored Dec 20, 2024
2 parents 829394a + 48addb4 commit b76f796
Show file tree
Hide file tree
Showing 2 changed files with 225 additions and 0 deletions.
12 changes: 12 additions & 0 deletions cookbook/providers/google/flash_thinking.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
from phi.agent import Agent
from phi.model.google import Gemini

task = (
"Three missionaries and three cannibals need to cross a river. "
"They have a boat that can carry up to two people at a time. "
"If, at any time, the cannibals outnumber the missionaries on either side of the river, the cannibals will eat the missionaries. "
"How can all six people get across the river safely? Provide a step-by-step solution and show the solutions as an ascii diagram"
)

agent = Agent(model=Gemini(id="gemini-2.0-flash-thinking-exp-1219"), markdown=True)
agent.print_response(task, stream=True)
213 changes: 213 additions & 0 deletions cookbook/workflows/startup_idea_validator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
"""
1. Install dependencies using: `pip install openai exa_py sqlalchemy phidata`
2. Run the script using: `python cookbook/workflows/blog_post_generator.py`
"""

import json
from typing import Optional, Iterator

from pydantic import BaseModel, Field

from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.googlesearch import GoogleSearch
from phi.workflow import Workflow, RunResponse, RunEvent
from phi.storage.workflow.sqlite import SqlWorkflowStorage
from phi.utils.pprint import pprint_run_response
from phi.utils.log import logger


class IdeaClarification(BaseModel):
originality: str = Field(..., description="Originality of the idea.")
mission: str = Field(..., description="Mission of the company.")
objectives: str = Field(..., description="Objectives of the company.")


class MarketResearch(BaseModel):
total_addressable_market: str = Field(..., description="Total addressable market (TAM).")
serviceable_available_market: str = Field(..., description="Serviceable available market (SAM).")
serviceable_obtainable_market: str = Field(..., description="Serviceable obtainable market (SOM).")
target_customer_segments: str = Field(..., description="Target customer segments.")


class StartupIdeaValidator(Workflow):
idea_clarifier_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
instructions=[
"Given a user's startup idea, its your goal to refine that idea. ",
"Evaluates the originality of the idea by comparing it with existing concepts. ",
"Define the mission and objectives of the startup.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
response_model=IdeaClarification,
structured_outputs=True,
debug_mode=False,
)

market_research_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[GoogleSearch()],
instructions=[
"You are provided with a startup idea and the company's mission and objectives. ",
"Estimate the total addressable market (TAM), serviceable available market (SAM), and serviceable obtainable market (SOM). ",
"Define target customer segments and their characteristics. ",
"Search the web for resources if you need to.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
response_model=MarketResearch,
structured_outputs=True,
debug_mode=False,
)

competitor_analysis_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[GoogleSearch()],
instructions=[
"You are provided with a startup idea and some market research related to the idea. ",
"Identify existing competitors in the market. ",
"Perform Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis for each competitor. ",
"Assess the startup’s potential positioning relative to competitors.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
markdown=True,
debug_mode=False,
)

report_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
instructions=[
"You are provided with a startup idea and other data about the idea. ",
"Summarise everything into a single report.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
markdown=True,
debug_mode=False,
)

def get_idea_clarification(self, startup_idea: str) -> Optional[IdeaClarification]:
try:
response: RunResponse = self.idea_clarifier_agent.run(startup_idea)

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Idea Clarification response")
# Check if the response is of the expected type
if not isinstance(response.content, IdeaClarification):
logger.warning("Invalid response type")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def get_market_research(self, startup_idea: str, idea_clarification: IdeaClarification) -> Optional[MarketResearch]:
agent_input = {"startup_idea": startup_idea, **idea_clarification.model_dump()}

try:
response: RunResponse = self.market_research_agent.run(json.dumps(agent_input, indent=4))

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Market Research response")

# Check if the response is of the expected type
if not isinstance(response.content, MarketResearch):
logger.warning("Invalid response type")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def get_competitor_analysis(self, startup_idea: str, market_research: MarketResearch) -> Optional[str]:
agent_input = {"startup_idea": startup_idea, **market_research.model_dump()}

try:
response: RunResponse = self.competitor_analysis_agent.run(json.dumps(agent_input, indent=4))

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Competitor Analysis response")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def run(self, startup_idea: str) -> Iterator[RunResponse]:
logger.info(f"Generating a startup validation report for: {startup_idea}")

# Clarify and quantify the idea
idea_clarification: Optional[IdeaClarification] = self.get_idea_clarification(startup_idea)

if idea_clarification is None:
yield RunResponse(
event=RunEvent.workflow_completed,
content=f"Sorry, could not even clarify the idea: {startup_idea}",
)
return

# Do some market research
market_research: Optional[MarketResearch] = self.get_market_research(startup_idea, idea_clarification)

if market_research is None:
yield RunResponse(
event=RunEvent.workflow_completed,
content="Market research failed",
)
return

competitor_analysis: Optional[str] = self.get_competitor_analysis(startup_idea, market_research)

# Compile the final report
final_response: RunResponse = self.report_agent.run(
json.dumps(
{
"startup_idea": startup_idea,
**idea_clarification.model_dump(),
**market_research.model_dump(),
"competitor_analysis_report": competitor_analysis,
},
indent=4,
)
)

yield RunResponse(content=final_response.content, event=RunEvent.workflow_completed)


# Run the workflow if the script is executed directly
if __name__ == "__main__":
from rich.prompt import Prompt

# Get idea from user
idea = Prompt.ask(
"[bold]What is your startup idea?[/bold]\n✨",
default="A marketplace for Christmas Ornaments made from leather",
)

# Convert the idea to a URL-safe string for use in session_id
url_safe_idea = idea.lower().replace(" ", "-")

startup_idea_validator = StartupIdeaValidator(
description="Startup Idea Validator",
session_id=f"validate-startup-idea-{url_safe_idea}",
storage=SqlWorkflowStorage(
table_name="validate_startup_ideas_workflow",
db_file="tmp/workflows.db",
),
debug_mode=True
)

final_report: Iterator[RunResponse] = startup_idea_validator.run(startup_idea=idea)

pprint_run_response(final_report, markdown=True)

0 comments on commit b76f796

Please sign in to comment.