Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a startup idea validator workflow #1610

Merged
merged 3 commits into from
Dec 20, 2024
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
212 changes: 212 additions & 0 deletions cookbook/workflows/startup_idea_validator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
"""
1. Install dependencies using: `pip install openai exa_py sqlalchemy phidata`
2. Run the script using: `python cookbook/workflows/blog_post_generator.py`
"""

import json
from typing import Optional, Iterator

from pydantic import BaseModel, Field

from phi.agent import Agent
from phi.model.openai import OpenAIChat
from phi.tools.googlesearch import GoogleSearch
from phi.workflow import Workflow, RunResponse, RunEvent
from phi.storage.workflow.sqlite import SqlWorkflowStorage
from phi.utils.pprint import pprint_run_response
from phi.utils.log import logger


class IdeaClarification(BaseModel):
originality: str = Field(..., description="Originality of the idea.")
mission: str = Field(..., description="Mission of the company.")
objectives: str = Field(..., description="Objectives of the company.")


class MarketResearch(BaseModel):
total_addressable_market: str = Field(..., description="Total addressable market (TAM).")
serviceable_available_market: str = Field(..., description="Serviceable available market (SAM).")
serviceable_obtainable_market: str = Field(..., description="Serviceable obtainable market (SOM).")
target_customer_segments: str = Field(..., description="Target customer segments.")


class StartupIdeaValidator(Workflow):
idea_clarifier_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
instructions=[
"Given a user's startup idea, its your goal to refine that idea. ",
"Evaluates the originality of the idea by comparing it with existing concepts. ",
"Define the mission and objectives of the startup.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
response_model=IdeaClarification,
structured_outputs=True,
debug_mode=False,
)

market_research_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[GoogleSearch()],
instructions=[
"You are provided with a startup idea and the company's mission and objectives. ",
"Estimate the total addressable market (TAM), serviceable available market (SAM), and serviceable obtainable market (SOM). ",
"Define target customer segments and their characteristics. ",
"Search the web for resources if you need to.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
response_model=MarketResearch,
structured_outputs=True,
debug_mode=False,
)

competitor_analysis_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[GoogleSearch()],
instructions=[
"You are provided with a startup idea and some market research related to the idea. ",
"Identify existing competitors in the market. ",
"Perform Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis for each competitor. ",
"Assess the startup’s potential positioning relative to competitors.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
markdown=True,
debug_mode=False,
)

report_agent: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
instructions=[
"You are provided with a startup idea and other data about the idea. ",
"Summarise everything into a single report.",
],
add_history_to_messages=True,
add_datetime_to_instructions=True,
markdown=True,
debug_mode=False,
)

def get_idea_clarification(self, startup_idea: str) -> Optional[IdeaClarification]:
try:
response: RunResponse = self.idea_clarifier_agent.run(startup_idea)

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Idea Clarification response")
# Check if the response is of the expected type
if not isinstance(response.content, IdeaClarification):
logger.warning("Invalid response type")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def get_market_research(self, startup_idea: str, idea_clarification: IdeaClarification) -> Optional[MarketResearch]:
agent_input = {"startup_idea": startup_idea, **idea_clarification.model_dump()}

try:
response: RunResponse = self.market_research_agent.run(json.dumps(agent_input, indent=4))

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Market Research response")

# Check if the response is of the expected type
if not isinstance(response.content, MarketResearch):
logger.warning("Invalid response type")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def get_competitor_analysis(self, startup_idea: str, market_research: MarketResearch) -> Optional[str]:
agent_input = {"startup_idea": startup_idea, **market_research.model_dump()}

try:
response: RunResponse = self.competitor_analysis_agent.run(json.dumps(agent_input, indent=4))

# Check if we got a valid response
if not response or not response.content:
logger.warning("Empty Competitor Analysis response")

return response.content

except Exception as e:
logger.warning(f"Failed: {str(e)}")

return None

def run(self, startup_idea: str) -> Iterator[RunResponse]:
logger.info(f"Generating a startup validation report for: {startup_idea}")

# Clarify and quantify the idea
idea_clarification: Optional[IdeaClarification] = self.get_idea_clarification(startup_idea)

if idea_clarification is None:
yield RunResponse(
event=RunEvent.workflow_completed,
content=f"Sorry, could not even clarify the idea: {startup_idea}",
)
return

# Do some market research
market_research: Optional[MarketResearch] = self.get_market_research(startup_idea, idea_clarification)

if market_research is None:
yield RunResponse(
event=RunEvent.workflow_completed,
content="Market research failed",
)
return

competitor_analysis: Optional[str] = self.get_competitor_analysis(startup_idea, market_research)

# Compile the final report
final_response: RunResponse = self.report_agent.run(
json.dumps(
{
"startup_idea": startup_idea,
**idea_clarification.model_dump(),
**market_research.model_dump(),
"competitor_analysis_report": competitor_analysis,
},
indent=4,
)
)

yield RunResponse(content=final_response.content, event=RunEvent.workflow_completed)


# Run the workflow if the script is executed directly
if __name__ == "__main__":
from rich.prompt import Prompt

# Get idea from user
idea = Prompt.ask(
"[bold]What is your startup idea?[/bold]\n✨",
default="A marketplace for Christmas Ornaments made from leather",
)

# Convert the idea to a URL-safe string for use in session_id
url_safe_idea = idea.lower().replace(" ", "-")

startup_idea_validator = StartupIdeaValidator(
description="Startup Idea Validator",
session_id=f"validate-startup-idea-{url_safe_idea}",
storage=SqlWorkflowStorage(
table_name="validate_startup_ideas_workflow",
db_file="tmp/workflows.db",
),
)

final_report: Iterator[RunResponse] = startup_idea_validator.run(startup_idea=idea)

pprint_run_response(final_report, markdown=True)
Loading