Skip to content

philouc/nilearn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nilearn

This projects contains a tutorial on how to process functional Magnetic Resonance Imaging (fMRI) data with the scikit-learn.

This work is made available by the INRIA Parietal Project Team and the scikit-learn folks, among which P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa and B. Thirion.

Important links

Dependencies

The required dependencies to sue the software are Python >= 2.6, setuptools, Numpy >= 1.3, SciPy >= 0.7, Scikit-learn >= 0.12.1 This configuration almost matches the Ubuntu 10.04 LTS release from April 2010, except for scikit-learn, which must be installed separately.

Running the examples requires matplotlib >= 0.99.1

If you want to run the tests, you need recent python-coverage and python-nose. (resp. 3.6 and 1.2.1).

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory, use:

python setup.py install --user

To install for all users on Unix/Linux:

python setup.py build
sudo python setup.py install

Development

Code

GIT

You can check the latest sources with the command:

git clone git://github.com/nilearn/nilearn

or if you have write privileges:

git clone [email protected]:nilearn/nilearn

About

Machine learning for NeuroImaging in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published