-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #38 from pjlab-sys4nlp/data_mix
CPT: add dynamic batch loading in sheared llama
- Loading branch information
Showing
27 changed files
with
3,821 additions
and
58 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
#!/usr/bin/bash | ||
|
||
#SBATCH --job-name=cpt-llama2_random_scale4_16gpus | ||
#SBATCH --output=/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_16gpus/%x-%j.log | ||
#SBATCH --error=/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_16gpus/%x-%j.log | ||
|
||
#SBATCH --partition=MoE | ||
#SBATCH --ntasks-per-node=1 | ||
#SBATCH --cpus-per-task=64 | ||
#SBATCH --mem=0 | ||
|
||
#SBATCH --nodes=2 | ||
#SBATCH --gres=gpu:8 | ||
#SBATCH --quotatype=reserved | ||
|
||
# reserved spot | ||
|
||
source ~/anaconda3/bin/activate smoe | ||
|
||
{ | ||
num_nodes=2 # should match with --nodes | ||
num_gpu_per_node=8 # should match with --gres | ||
|
||
# #cpu/#num_gpu_per_node | ||
export OMP_NUM_THREADS=32 | ||
export LOGLEVEL=INFO | ||
# export NCCL_DEBUG=INFO | ||
# export TORCH_DISTRIBUTED_DEBUG=DETAIL | ||
# export TORCH_SHOW_CPP_STACKTRACES=1 | ||
# export CUDA_LAUNCH_BLOCKING=1 | ||
|
||
############################################################## | ||
############### LLAMA 7B Moefication 16Experts ############### | ||
# comment="llama 7B residual, gradient, 2 + 2/14 | soft residual 2.0 | soft moe 2.0 | GPU num 1, per-device bs 64, lr 1e-4" | ||
# pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEResidualForCausalLM/Gradient-max-l1_norm-sample-feature_change/llama_7B-14Select2-2Residuals-688Neurons-Share | ||
|
||
############################################################## | ||
######## LLAMA 2 7B 16 Experts all kinds of ablations ######## | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual hard, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual plain soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual learn soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
model_type="llama_moe" | ||
comment="llama 2 7B, random 4/16, per-device bsz 4M tokens, lr 1e-4, 16gpus" | ||
pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEForCausalLM/Random/llama2_7B-16Select4-up_proj-Scale4.0 | ||
|
||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual hard, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual plain soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual learn soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual learn soft 2.0, moe soft 2.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEResidualForCausalLM/Gradient-max-l1_norm-sample-feature_change/llama2_7B-14Select2-2Residuals-688Neurons-Share | ||
|
||
############################################################## | ||
|
||
tokenizer_path=/mnt/petrelfs/share_data/quxiaoye/models/llama2_7B | ||
dataset_dir=/mnt/petrelfs/share_data/quxiaoye/SlimPajama_processed | ||
validation_dir=/mnt/petrelfs/share_data/quxiaoye/data/llama1_7B_val_set_tokenized | ||
|
||
lr=1e-4 | ||
final_lr_portion=0.1 | ||
per_device_train_batch_size=8 | ||
per_device_eval_batch_size=8 | ||
gradient_accumulation_steps=8 | ||
block_size=4096 | ||
num_tokens="200*10^9" | ||
warmup_tokens="1*10^9" | ||
# warmup_tokens="0" | ||
eval_tokens="1*10^9" | ||
seed=1227 | ||
deepspeed_config_file=conf/deepspeed/bf16_zero1_default.json | ||
|
||
num_selects=4 | ||
|
||
max_steps=$(echo "${num_tokens} / ($block_size * $per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node)" | bc) | ||
max_train_samples=$(echo "${num_tokens} / $block_size" | bc) | ||
echo "max_steps: $max_steps" | ||
echo "max_train_samples: $max_train_samples" | ||
global_bs=$(echo "$per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node" | bc) | ||
echo "global batch size: $global_bs" | ||
tokens_per_batch=$(echo "$global_bs * $block_size" | bc) | ||
echo "#tokens/batch: $tokens_per_batch" | ||
warmup_steps=$(echo "$warmup_tokens / $tokens_per_batch" | bc) | ||
echo "warmup tokens: $warmup_tokens, warmup steps: $warmup_steps" | ||
eval_steps=$(echo "$eval_tokens / $tokens_per_batch" | bc) | ||
echo "eval interval (tokens): $eval_tokens, steps: $eval_steps" | ||
|
||
data_cache=resources/cache | ||
base_dir="/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_16gpus" | ||
output_dir=$base_dir/outputs/$SLURM_JOB_NAME-$SLURM_JOB_ID | ||
mkdir -p $output_dir | ||
echo "output_dir: $output_dir" | ||
scontrol write batch_script $SLURM_JOBID $output_dir/sbatch.sh | ||
git diff > $output_dir/diff.patch | ||
env > $output_dir/env | ||
echo $comment > $output_dir/comment.txt | ||
echo "$SLURM_JOB_ID" > $base_dir/latest.jobid | ||
ln -snf $output_dir $base_dir/latest.dir | ||
ln -snf $(scontrol show job $SLURM_JOB_ID | grep "StdOut=" | cut -d '=' -f 2) $base_dir/latest.log | ||
|
||
nodes=($(scontrol show hostnames $SLURM_JOB_NODELIS)) | ||
nodes_array=($nodes) | ||
head_node=${nodes_array[0]} | ||
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) | ||
echo "Node: $head_node" | ||
echo "Node IP: $head_node_ip" | ||
echo "Node list: $SLURM_JOB_NODELIS" | ||
|
||
srun torchrun \ | ||
--nnodes ${num_nodes} \ | ||
--nproc_per_node ${num_gpu_per_node} \ | ||
--node_rank $SLURM_NODEID \ | ||
--rdzv_id $RANDOM \ | ||
--rdzv_backend c10d \ | ||
--rdzv_endpoint $head_node:29518 \ | ||
smoe/entrypoint/cpt/cpt_fpt.py \ | ||
--deepspeed ${deepspeed_config_file} \ | ||
--model_name_or_path ${pretrained_model} \ | ||
--model_type ${model_type} \ | ||
--tokenizer_name_or_path ${tokenizer_path} \ | ||
--dataset_dir ${dataset_dir} \ | ||
--data_cache_dir ${data_cache} \ | ||
--validation_dir ${validation_dir} \ | ||
--per_device_train_batch_size ${per_device_train_batch_size} \ | ||
--per_device_eval_batch_size ${per_device_eval_batch_size} \ | ||
--do_train \ | ||
--evaluation_strategy steps \ | ||
--eval_steps ${eval_steps} \ | ||
--seed ${seed} \ | ||
--bf16 \ | ||
--num_train_epochs 1 \ | ||
--final_lr_portion ${final_lr_portion} \ | ||
--optim adamw_torch \ | ||
--adam_beta1 0.9 \ | ||
--adam_beta2 0.95 \ | ||
--learning_rate ${lr} \ | ||
--weight_decay 0.1 \ | ||
--max_grad_norm 1.0 \ | ||
--warmup_steps ${warmup_steps} \ | ||
--max_steps ${max_steps} \ | ||
--max_train_samples ${max_train_samples} \ | ||
--save_strategy steps \ | ||
--save_total_limit 1 \ | ||
--save_steps ${eval_steps} \ | ||
--dataloader_num_workers 0 \ | ||
--dataloader_pin_memory True \ | ||
--gradient_accumulation_steps ${gradient_accumulation_steps} \ | ||
--block_size ${block_size} \ | ||
--output_dir ${output_dir} \ | ||
--overwrite_output_dir \ | ||
--ddp_timeout 3600 \ | ||
--ddp_find_unused_parameters False \ | ||
--torch_dtype bfloat16 \ | ||
--gradient_checkpointing \ | ||
--logging_first_step True \ | ||
--logging_strategy steps \ | ||
--logging_steps 5 \ | ||
--log_level info \ | ||
--log_level_replica warning \ | ||
--log_on_each_node False \ | ||
--report_to none \ | ||
--gate_type "TopKBalancedNoisyGate" \ | ||
--calculator_type "UniversalCalculator" \ | ||
--num_selects ${num_selects} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
#!/usr/bin/bash | ||
|
||
#SBATCH --job-name=llama2_random_scale4_32gpus_dynamic_data | ||
#SBATCH --output=/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_32gpus_dynamic_data/%x-%j.log | ||
#SBATCH --error=/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_32gpus_dynamic_data/%x-%j.log | ||
|
||
#SBATCH --partition=MoE | ||
#SBATCH --ntasks-per-node=1 | ||
#SBATCH --cpus-per-task=64 | ||
#SBATCH --mem=0 | ||
|
||
#SBATCH --nodes=4 | ||
#SBATCH --gres=gpu:8 | ||
#SBATCH --quotatype=reserved | ||
|
||
# reserved spot | ||
|
||
source ~/anaconda3/bin/activate smoe | ||
|
||
{ | ||
num_nodes=4 # should match with --nodes | ||
num_gpu_per_node=8 # should match with --gres | ||
|
||
# #cpu/#num_gpu_per_node | ||
export OMP_NUM_THREADS=32 | ||
export LOGLEVEL=INFO | ||
# export NCCL_DEBUG=INFO | ||
# export TORCH_DISTRIBUTED_DEBUG=DETAIL | ||
# export TORCH_SHOW_CPP_STACKTRACES=1 | ||
# export CUDA_LAUNCH_BLOCKING=1 | ||
|
||
############################################################## | ||
############### LLAMA 7B Moefication 16Experts ############### | ||
# comment="llama 7B residual, gradient, 2 + 2/14 | soft residual 2.0 | soft moe 2.0 | GPU num 1, per-device bs 64, lr 1e-4" | ||
# pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEResidualForCausalLM/Gradient-max-l1_norm-sample-feature_change/llama_7B-14Select2-2Residuals-688Neurons-Share | ||
|
||
############################################################## | ||
######## LLAMA 2 7B 16 Experts all kinds of ablations ######## | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual hard, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual plain soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, moefication gradient 2/14 | residual learn soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
model_type="llama_moe" | ||
comment="llama 2 7B, random 4/16, per-device bsz 4M tokens, lr 1e-4, 16gpus" | ||
pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEForCausalLM/Random/llama2_7B-16Select4-up_proj-Scale4.0 | ||
|
||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual hard, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual plain soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual learn soft 8.0, moe soft 8.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# comment="llama 2 7B, residual 2, share gradient 2/14 | residual learn soft 2.0, moe soft 2.0 | GPU num 16, per-device bs 32, lr 3e-4" | ||
# pretrained_model=/mnt/petrelfs/share_data/quxiaoye/models/LlamaMoEResidualForCausalLM/Gradient-max-l1_norm-sample-feature_change/llama2_7B-14Select2-2Residuals-688Neurons-Share | ||
|
||
############################################################## | ||
|
||
tokenizer_path=/mnt/petrelfs/share_data/quxiaoye/models/llama2_7B | ||
dataset_dir=/mnt/petrelfs/share_data/quxiaoye/SlimPajama_processed | ||
validation_dir=/mnt/petrelfs/share_data/quxiaoye/data/llama1_7B_val_set_tokenized | ||
|
||
lr=2e-4 | ||
final_lr_portion=0.1 | ||
per_device_train_batch_size=8 | ||
per_device_eval_batch_size=8 | ||
gradient_accumulation_steps=4 | ||
block_size=4096 | ||
num_tokens="200*10^9" | ||
warmup_tokens="1*10^9" | ||
# warmup_tokens="0" | ||
eval_tokens="1*10^9" | ||
seed=1227 | ||
deepspeed_config_file=conf/deepspeed/bf16_zero1_default.json | ||
|
||
num_selects=4 | ||
|
||
max_steps=$(echo "${num_tokens} / ($block_size * $per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node)" | bc) | ||
max_train_samples=$(echo "${num_tokens} / $block_size" | bc) | ||
echo "max_steps: $max_steps" | ||
echo "max_train_samples: $max_train_samples" | ||
global_bs=$(echo "$per_device_train_batch_size * $gradient_accumulation_steps * $num_nodes * $num_gpu_per_node" | bc) | ||
echo "global batch size: $global_bs" | ||
tokens_per_batch=$(echo "$global_bs * $block_size" | bc) | ||
echo "#tokens/batch: $tokens_per_batch" | ||
warmup_steps=$(echo "$warmup_tokens / $tokens_per_batch" | bc) | ||
echo "warmup tokens: $warmup_tokens, warmup steps: $warmup_steps" | ||
eval_steps=$(echo "$eval_tokens / $tokens_per_batch" | bc) | ||
echo "eval interval (tokens): $eval_tokens, steps: $eval_steps" | ||
|
||
data_cache=resources/cache | ||
base_dir="/mnt/petrelfs/share_data/quxiaoye/runs/llama2_random_scale4_32gpus_dynamic_data" | ||
output_dir=$base_dir/outputs/$SLURM_JOB_NAME-$SLURM_JOB_ID | ||
mkdir -p $output_dir | ||
echo "output_dir: $output_dir" | ||
scontrol write batch_script $SLURM_JOBID $output_dir/sbatch.sh | ||
git diff > $output_dir/diff.patch | ||
env > $output_dir/env | ||
echo $comment > $output_dir/comment.txt | ||
echo "$SLURM_JOB_ID" > $base_dir/latest.jobid | ||
ln -snf $output_dir $base_dir/latest.dir | ||
ln -snf $(scontrol show job $SLURM_JOB_ID | grep "StdOut=" | cut -d '=' -f 2) $base_dir/latest.log | ||
|
||
nodes=($(scontrol show hostnames $SLURM_JOB_NODELIS)) | ||
nodes_array=($nodes) | ||
head_node=${nodes_array[0]} | ||
head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address) | ||
echo "Node: $head_node" | ||
echo "Node IP: $head_node_ip" | ||
echo "Node list: $SLURM_JOB_NODELIS" | ||
|
||
srun torchrun \ | ||
--nnodes ${num_nodes} \ | ||
--nproc_per_node ${num_gpu_per_node} \ | ||
--node_rank $SLURM_NODEID \ | ||
--rdzv_id $RANDOM \ | ||
--rdzv_backend c10d \ | ||
--rdzv_endpoint $head_node:29518 \ | ||
smoe/entrypoint/cpt/cpt_fpt.py \ | ||
--deepspeed ${deepspeed_config_file} \ | ||
--model_name_or_path ${pretrained_model} \ | ||
--model_type ${model_type} \ | ||
--tokenizer_name_or_path ${tokenizer_path} \ | ||
--dataset_dir ${dataset_dir} \ | ||
--data_cache_dir ${data_cache} \ | ||
--validation_dir ${validation_dir} \ | ||
--per_device_train_batch_size ${per_device_train_batch_size} \ | ||
--per_device_eval_batch_size ${per_device_eval_batch_size} \ | ||
--do_train \ | ||
--evaluation_strategy steps \ | ||
--eval_steps ${eval_steps} \ | ||
--seed ${seed} \ | ||
--bf16 \ | ||
--num_train_epochs 1 \ | ||
--final_lr_portion ${final_lr_portion} \ | ||
--optim adamw_torch \ | ||
--adam_beta1 0.9 \ | ||
--adam_beta2 0.95 \ | ||
--learning_rate ${lr} \ | ||
--weight_decay 0.1 \ | ||
--max_grad_norm 1.0 \ | ||
--warmup_steps ${warmup_steps} \ | ||
--max_steps ${max_steps} \ | ||
--max_train_samples ${max_train_samples} \ | ||
--save_strategy steps \ | ||
--save_total_limit 1 \ | ||
--save_steps ${eval_steps} \ | ||
--dataloader_num_workers 0 \ | ||
--dataloader_pin_memory True \ | ||
--gradient_accumulation_steps ${gradient_accumulation_steps} \ | ||
--block_size ${block_size} \ | ||
--output_dir ${output_dir} \ | ||
--overwrite_output_dir \ | ||
--ddp_timeout 3600 \ | ||
--ddp_find_unused_parameters False \ | ||
--torch_dtype bfloat16 \ | ||
--gradient_checkpointing \ | ||
--logging_first_step True \ | ||
--logging_strategy steps \ | ||
--logging_steps 5 \ | ||
--log_level info \ | ||
--log_level_replica warning \ | ||
--log_on_each_node False \ | ||
--report_to none \ | ||
--gate_type "TopKBalancedNoisyGate" \ | ||
--calculator_type "UniversalCalculator" \ | ||
--num_selects ${num_selects} | ||
} |
Oops, something went wrong.