Skip to content

plexe-ai/plexe-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PlexeAI

PlexeAI Logo

Create ML models from natural language descriptions

PyPI version Python Versions License: MIT


🚀 Features

  • 🤖 AI-Powered Model Creation - Build ML models using natural language descriptions
  • 📊 Automated Training - Upload your data and let PlexeAI handle the rest
  • Async Support - Built-in async interfaces for high-performance applications
  • 🔄 Batch Processing - Efficient batch prediction capabilities
  • 🛠️ Simple API - Intuitive interface for both beginners and experts

📦 Installation

pip install plexe

🏃‍♂️ Quickstart

import plexe

# Create a model in seconds
model_version = plexe.build(
    goal="predict customer churn based on usage patterns",
    model_name="churn-predictor",
    data_files="customer_data.csv"
)

# Make predictions
result = plexe.infer(
    model_name="churn-predictor",
    model_version=model_version,
    input_data={
        "usage": 100,
        "tenure": 12,
        "plan_type": "premium"
    }
)

🎯 Example Use Cases

  • 📈 Churn Prediction: Predict customer churn using historical data
  • 🏷️ Classification: Categorize text, images, or any structured data
  • 📊 Regression: Predict numerical values like sales or pricing
  • 🔄 Time Series: Forecast trends and patterns in sequential data

🔥 Advanced Usage

Batch Predictions

results = plexe.batch_infer(
    model_name="churn-predictor",
    model_version=model_version,
    inputs=[
        {"usage": 100, "tenure": 12, "plan_type": "premium"},
        {"usage": 50, "tenure": 6, "plan_type": "basic"}
    ]
)

Async Support

async def main():
    model_version = await plexe.abuild(
        goal="predict customer churn",
        model_name="churn-predictor",
        data_files="customer_data.csv"
    )
    
    result = await plexe.ainfer(
        model_name="churn-predictor",
        model_version=model_version,
        input_data={"usage": 100, "tenure": 12}
    )

Direct Client Usage

from plexe import PlexeAI

with PlexeAI(api_key="your_api_key_here") as client:
    # Upload data
    upload_id = client.upload_files("customer_data.csv")
    
    # Create and use model
    model_version = client.build(
        goal="predict customer churn",
        model_name="churn-predictor",
        upload_id=upload_id
    )

📚 Documentation

Check out our comprehensive documentation for:

  • Detailed API reference
  • Advanced usage examples
  • Best practices
  • Tutorials and guides

🛠️ Development

# Clone the repository
git clone https://github.com/plexe-ai/plexe
cd plexe

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

🤝 Contributing

We welcome contributions!

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


Made with ❤️ by Plexe AI

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published