- 🤖 AI-Powered Model Creation - Build ML models using natural language descriptions
- 📊 Automated Training - Upload your data and let PlexeAI handle the rest
- ⚡ Async Support - Built-in async interfaces for high-performance applications
- 🔄 Batch Processing - Efficient batch prediction capabilities
- 🛠️ Simple API - Intuitive interface for both beginners and experts
pip install plexe
import plexe
# Create a model in seconds
model_version = plexe.build(
goal="predict customer churn based on usage patterns",
model_name="churn-predictor",
data_files="customer_data.csv"
)
# Make predictions
result = plexe.infer(
model_name="churn-predictor",
model_version=model_version,
input_data={
"usage": 100,
"tenure": 12,
"plan_type": "premium"
}
)
- 📈 Churn Prediction: Predict customer churn using historical data
- 🏷️ Classification: Categorize text, images, or any structured data
- 📊 Regression: Predict numerical values like sales or pricing
- 🔄 Time Series: Forecast trends and patterns in sequential data
results = plexe.batch_infer(
model_name="churn-predictor",
model_version=model_version,
inputs=[
{"usage": 100, "tenure": 12, "plan_type": "premium"},
{"usage": 50, "tenure": 6, "plan_type": "basic"}
]
)
async def main():
model_version = await plexe.abuild(
goal="predict customer churn",
model_name="churn-predictor",
data_files="customer_data.csv"
)
result = await plexe.ainfer(
model_name="churn-predictor",
model_version=model_version,
input_data={"usage": 100, "tenure": 12}
)
from plexe import PlexeAI
with PlexeAI(api_key="your_api_key_here") as client:
# Upload data
upload_id = client.upload_files("customer_data.csv")
# Create and use model
model_version = client.build(
goal="predict customer churn",
model_name="churn-predictor",
upload_id=upload_id
)
Check out our comprehensive documentation for:
- Detailed API reference
- Advanced usage examples
- Best practices
- Tutorials and guides
# Clone the repository
git clone https://github.com/plexe-ai/plexe
cd plexe
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
We welcome contributions!
This project is licensed under the MIT License - see the LICENSE file for details.
Made with ❤️ by Plexe AI