This is the repo for 598DLH final project.
- Ruike Zhu
- Pan Liu
We reproduce the Sherbet model, link of paper: https://arxiv.org/pdf/2106.04751.pdf
We have done the experiments in the below table
for Heart Failure task:
| | F1 | AUC score |
| ------------ | ----------------- | ------------------ |
| dropout = 0.2 | 0.7307171853856563 | 0.8612635647903025 |
| dropout = 0.4 | 0.7385019710906703 | 0.8666701103262437 |
| dropout = 0.6 | 0.7409470752089138 | 0.8633082376641656 |
| dropout = 0.8 | 0.7340720221606648 | 0.8634502886217184 |
| sherbet_b | 0.744 | 0.8657532359638589 |
for diagnosis task
| | recall@10 | recall@20 | F1 |
| ------------| ----------------- | ------------------ | ---------------------- |
| sherbet_a | 0.3920123 | 0.40286424 | 0.2410660363641088 |
| sherbet_b | 0.3884631 | 0.40051201 | 0.23019432399405035 |
for diagnosis task
| | recall@10 | recall@20 | F1 |
| ------------ | ----------------- | ------------------ | --------------------- |
| sherbet_a | 0.78273214 | 0.82769583 | 0.6155913694704069 |
*sherbet_a: follow the origin parameters provided in paper: Sherbet with self-supervised learning and hierarchical prediction, and pretrain with hyperbolic embedding.
*sherbet_b: removing hyperbolic embedding part in pretrain
We visualize our training result in pictures like below, all the score is get from validation data. Please refer to the output_res folder if you want to see other visualized results
python data_preprocess.py
python run_hyperbolic_embedding.py
python main.py
Lu, Chang & Reddy, Chandan & Ning, Yue. (2021). Self-Supervised Graph Learning With Hyperbolic Embedding for Temporal Health Event Prediction. IEEE Transactions on Cybernetics. PP. 1-13. 10.1109/TCYB.2021.3109881.