Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(python): Support "indexed" dicts as input to from_dict and from_dicts #18215

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 98 additions & 8 deletions py-polars/polars/convert/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,13 @@


def from_dict(
data: Mapping[str, Sequence[object] | Mapping[str, Sequence[object]] | Series],
data: Mapping[
str, Sequence[object] | Mapping[str, Sequence[object]] | Series | object
],
schema: SchemaDefinition | None = None,
*,
schema_overrides: SchemaDict | None = None,
indexed: bool | str = False,
strict: bool = True,
) -> DataFrame:
"""
Expand All @@ -48,8 +51,8 @@ def from_dict(
Parameters
----------
data : dict of sequences
Two-dimensional data represented as a dictionary. dict must contain
Sequences.
Two-dimensional data represented as a dictionary; the dictionary is expected
to contain Sequences of values.
schema : Sequence of str, (str,DataType) pairs, or a {str:DataType,} dict
The DataFrame schema may be declared in several ways:

Expand All @@ -63,6 +66,11 @@ def from_dict(
schema_overrides : dict, default None
Support type specification or override of one or more columns; note that
any dtypes inferred from the columns param will be overridden.
indexed : {bool, str}, default False
If True (or a string name), the `data` dictionary key is expected to represent
an index column, with values being dictionary records associated with that key.
If a string is passed then that will be the index column name, otherwise the
default value "index" is used.
strict : bool, default True
Throw an error if any `data` value does not exactly match the given or inferred
data type for that column. If set to `False`, values that do not match the data
Expand All @@ -75,6 +83,8 @@ def from_dict(

Examples
--------
Construct a DataFrame from a dictionary of sequences:

>>> df = pl.from_dict({"a": [1, 2], "b": [3, 4]})
>>> df
shape: (2, 2)
Expand All @@ -86,22 +96,60 @@ def from_dict(
│ 1 ┆ 3 │
│ 2 ┆ 4 │
└─────┴─────┘

Construct a DataFrame from an indexed dictionary of such data:

>>> df = pl.from_dict(
... data={
... "a": {"x": [1, 2], "y": [0.5, 2.5]},
... "b": {"x": [5, 6], "y": [5.0, 1.0]},
... },
... indexed=True,
... )
>>> df
shape: (4, 3)
┌───────┬─────┬─────┐
│ index ┆ x ┆ y │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ f64 │
╞═══════╪═════╪═════╡
│ a ┆ 1 ┆ 0.5 │
│ a ┆ 2 ┆ 2.5 │
│ b ┆ 5 ┆ 5.0 │
│ b ┆ 6 ┆ 1.0 │
└───────┴─────┴─────┘
"""
return wrap_df(
dict_to_pydf(
data,
if indexed:
label = indexed if isinstance(indexed, str) else "index"
records = [
{label: idx, **dict(zip(values.keys(), v) if values else {})} # type: ignore[attr-defined,arg-type]
for idx, values in data.items()
for v in (zip(*values.values()) if values else (None,)) # type: ignore[attr-defined]
]
return from_records(
records,
schema=schema,
schema_overrides=schema_overrides,
strict=strict,
orient="row",
)
else:
return wrap_df(
dict_to_pydf(
data, # type: ignore[arg-type]
schema=schema,
schema_overrides=schema_overrides,
strict=strict,
)
)
)


def from_dicts(
data: Iterable[dict[str, Any]],
data: Iterable[Mapping[str, Any]] | Mapping[Any, Iterable[Mapping[str, Any]]],
schema: SchemaDefinition | None = None,
*,
schema_overrides: SchemaDict | None = None,
indexed: bool | str = False,
strict: bool = True,
infer_schema_length: int | None = N_INFER_DEFAULT,
) -> DataFrame:
Expand Down Expand Up @@ -130,6 +178,11 @@ def from_dicts(
adding them to the schema.
schema_overrides : dict, default None
Support override of inferred types for one or more columns.
indexed : {bool, str}, default False
If True (or a string name), the `data` dictionary key is expected to represent
an index column, with values being a list of dictionary records associated
with that key. If a string is passed then that will be the index column name,
otherwise the default value "idx" is used.
strict : bool, default True
Throw an error if any `data` value does not exactly match the given or inferred
data type for that column. If set to `False`, values that do not match the data
Expand Down Expand Up @@ -192,7 +245,44 @@ def from_dicts(
│ 2 ┆ 5 ┆ null ┆ null │
│ 3 ┆ 6 ┆ null ┆ null │
└─────┴─────┴──────┴──────┘

Indexed records can also be loaded straightforwardly:

>>> data = {
... "a": [
... {"w": None, "x": 1, "y": 2.5, "z": None},
... {"x": 8, "y": 5.0, "w": None, "z": None},
... ],
... "b": [
... {"x": None, "y": 2.0, "w": 0, "z": 8},
... {"x": None, "y": 3.0, "w": 0, "z": 7},
... ],
... "c": [
... {"y": None, "w": None, "z": None, "x": 0},
... ],
... }
>>> pl.from_dicts(data, indexed=True)
shape: (5, 5)
┌───────┬──────┬──────┬──────┬──────┐
│ index ┆ w ┆ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 ┆ f64 ┆ i64 │
╞═══════╪══════╪══════╪══════╪══════╡
│ a ┆ null ┆ 1 ┆ 2.5 ┆ null │
│ a ┆ null ┆ 8 ┆ 5.0 ┆ null │
│ b ┆ 0 ┆ null ┆ 2.0 ┆ 8 │
│ b ┆ 0 ┆ null ┆ 3.0 ┆ 7 │
│ c ┆ null ┆ 0 ┆ null ┆ null │
└───────┴──────┴──────┴──────┴──────┘
"""
if indexed:
label = indexed if isinstance(indexed, str) else "index"
data = [
{label: key, **record}
for key, records in data.items() # type: ignore[union-attr]
for record in records
]

if not data and not (schema or schema_overrides):
msg = "no data, cannot infer schema"
raise NoDataError(msg)
Expand Down
58 changes: 57 additions & 1 deletion py-polars/tests/unit/dataframe/test_from_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,5 +253,61 @@ def test_from_dict_cast_logical_type(dtype: pl.DataType, data: Any) -> None:
],
schema=schema,
)

assert_frame_equal(df_from_dicts, df)


def test_from_dict_indexed() -> None:
data = {
"a": {"x": [1, 8], "y": [2.5, 5.0]},
"b": {"w": [0, 0], "y": [2, 3], "z": [8, 7]},
"c": None,
}
expected_data = {
"index": ["a", "a", "b", "b", "c"],
"x": [1, 8, None, None, None],
"y": [2.5, 5.0, 2.0, 3.0, None],
"w": [None, None, 0, 0, None],
"z": [None, None, 8, 7, None],
}
expected_frame = pl.DataFrame(expected_data)

res = pl.from_dict(data, indexed=True)
assert_frame_equal(expected_frame, res)

res = pl.from_dict(data=data, indexed="key")
assert_frame_equal(expected_frame.rename({"index": "key"}), res)


def test_from_dicts_indexed() -> None:
df = pl.DataFrame(
{
"idx": ["a", "a", "b", "b", "c"],
"x": [1, 8, None, None, None],
"y": [2.5, 5.0, 2.0, 3.0, None],
"w": [None, None, 0, 0, None],
"z": [None, None, 8, 7, None],
}
)

# export records...
indexed_records = df.rows_by_key("idx", named=True)
assert indexed_records == {
"a": [
{"x": 1, "y": 2.5, "w": None, "z": None},
{"x": 8, "y": 5.0, "w": None, "z": None},
],
"b": [
{"x": None, "y": 2.0, "w": 0, "z": 8},
{"x": None, "y": 3.0, "w": 0, "z": 7},
],
"c": [
{"x": None, "y": None, "w": None, "z": None},
],
}

# ...and read them back
res = pl.from_dicts(indexed_records, indexed=True)
assert_frame_equal(res, df.rename({"idx": "index"}))

res = pl.from_dicts(data=indexed_records, indexed="key")
assert_frame_equal(res.rename({"key": "idx"}), df)
Loading