Skip to content

Plugin for Nav2 Costmap 2d to convert radar messages into obstacles on a costmap

License

Notifications You must be signed in to change notification settings

polymathrobotics/radar_layer

Repository files navigation

Polymath Radar_layer

The radar_layer package is a costmap plugin for Nav2 Costmap 2d to turn radar tracks into data that can be used in a costmap. It is expected the radar track includes the object's centroid position, velocity, position covariance, velocity covariance, and planar size of the detected object. This package allows the cost to be placed into the costmap in two different ways:

Footprint Stamping

This is the simplest method where a rectangle determined by the x and y size of the obstacle, is placed into the costmap as a lethal obstacle, around the obstacle's centroid. This placed lethal obstacle can then be inflated with the inflation layer for planning purposes

2D Gaussian Process

The cost is distributed as a 2D gaussian, where the centroid position is the highest cost and the cost surrounding the centroid decreases like a 2D normal distribution, based on the position covariance. To incorporate the size of the obstacle, the position covariance is extended when evaluating the probability density function as follows:

$$ \Sigma = \alpha(\begin{bmatrix} \sigma_x & 0 \\ 0 & \sigma_y \end{bmatrix} + \begin{bmatrix} \frac{l}{2} & 0 \\ 0 & \frac{w}{2} \end{bmatrix}) $$

with probability density function

$$ f = \frac{1}{\sqrt{2\pi|\Sigma|}}\exp{\left(-\frac{1}{2}\begin{bmatrix} x-\mu_x \\ y-\mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x-\mu_x \\ y-\mu_y \end{bmatrix}\right)} $$

where $\alpha$ is some covariance scaling factor for tuning, $\sigma_x$ and $\sigma_y$ are the position covariances of x and y, respectively, $l$ and $w$ are the length and width of the obstacle respectively, and $\mu_x$ and $\mu_y$ are the means of x and y respectively. Should the radar track also have velocity, the user may choose to project the gaussian distributed costmap into the future in order to plan to avoid a moving object in the future. The original Gaussian's mean is projected forward with the velocity, and the projected covariance is spread and scaled down as a function of the velocity covariance.

The algorithm used in this package is based on the following work:

@article{guo2023autonomous,
      title={Autonomous Navigation in Dynamic Environments with Multi-Modal Perception Uncertainties}, 
      author={Hongliang Guo and Zefan Huang and Qiheng Ho and Marcelo Ang and Daniela Rus},
      year={2021},
      journal = {IEEE International Conference on Robotics and Automation}
}

Topics

This costmap layer expects the radar tracks to be published in the ObstacleArray format defined by the navigation2_dynamic package

Configuration

Parameter Description
enabled Whether it is enabled.
combination_method Enum for method to add data to master costmap. Must be 0, 1 or 2, default to 1
observation_sources namespace of sources of data
minimum_probability minimum probability to place in costmap
number_of_time_steps number of time steps to propogate gaussian distribution of obstacle
stamp_footprint Whether to use stamp footprint method or not
sample_time sample time to propogate gaussian distribution of obstacle
<data source>.topic Topic of data
<data source>.datatype Datatype of topic
<data source>.sensor_frame TF frame
<data source>.qos_deadline_hz Sets the QOS deadline on your data source

Example fully-described XML with default parameter values:

costmap:
  costmap:
    ros__parameters:
      footprint: "[[-1.0,-0.3],[-1.0,0.3],[3.5,0.3],[3.5,-0.3]]"
      footprint_padding: 0.0
      transform_tolerance: 2.0

      update_frequency: 20.0
      publish_frequency: 10.0

      global_frame: odom
      robot_base_frame: base_link

      width: 100
      height: 100
      origin_x: -50.0
      origin_y: -50.0
      resolution: 0.2
      rolling_window: true

      track_unknown_space: false
      unknown_cost_value: 25
      use_maximum: true

      plugins: ["radar_layer"]

      radar_layer:
        plugin: "radar_layer/RadarLayer"
        enabled: True
        number_of_time_steps: 10
        sample_time: 0.1
        minimum_probability: 0.15
        observation_sources: "radar"
        stamp_footprint: True
        covariance_scaling_factor: 2.0
        radar:
          topic: /tracking

      always_send_full_costmap: True

About

Plugin for Nav2 Costmap 2d to convert radar messages into obstacles on a costmap

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •