Skip to content

Commit

Permalink
Merge pull request #153 from pou036/151_thermal_diff
Browse files Browse the repository at this point in the history
#151 updated doc
  • Loading branch information
pou036 authored Jan 15, 2018
2 parents b710473 + 6e5a413 commit d5ed59a
Show file tree
Hide file tree
Showing 2 changed files with 32 additions and 32 deletions.
Binary file modified doc/theory/theory.pdf
Binary file not shown.
64 changes: 32 additions & 32 deletions doc/theory/theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ \section{System of equations}
~ & \qquad\qquad - \Lambda_m \pdiff{T}{t} +
\frac{Pe\:\dot{\epsilon_V}}{\bar{\beta}^*} -\frac{1}{Le_{chem}}
\omega_F, \\
0 &= \pdiff{T}{t} + Pe\:\bar{v}^{m}_i\pdiff{T}{i} - \pd_{ii}^2 T - Gr
0 &= \pdiff{T}{t} + Pe\:\bar{v}^{m}_i\pdiff{T}{i} - \pd_{ii}c^*_{th}\pd_{ii} T - Gr
\: \sigma_{ij}^{pl}\dot{\epsilon}_{ij}^{\,pl} \\ \nonumber
~ & \qquad\qquad + Da_{endo}\: (1 - s)(1 - \phi)e^{\frac{Ar_F\:\delta T}{1+\delta T}} \\ \nonumber
~ & \qquad\qquad - Da_{exo}\:\: s (1 - \phi)\Delta \phi_{chem} e^{\frac{Ar_R\:\delta T}{1+\delta T}}.
Expand Down Expand Up @@ -170,7 +170,7 @@ \section{Rescaling}
p^* &= \frac{p_f}{\sigma_{ref}}, \\
T^* &= \frac{T-T_{ref}}{\delta T_{ref}}, \\
x^* &= \frac{x}{x_{ref}}, \\
t^* &= \frac{c_{th}}{x^2_{ref}}t, \\
t^* &= \frac{c_{th,ref}}{x^2_{ref}}t, \\
V^* &= \frac{V}{V_{ref}}.
\end{align}
\end{subequations}
Expand Down Expand Up @@ -286,16 +286,16 @@ \section{Chemical damage}
\hline\noalign{\smallskip}
Group & Name & Definition & Interpretation \\
\noalign{\smallskip}\hline\hline\noalign{\smallskip}
$Gr$ & Gruntfest number & $\frac{\chi\sigma_{ref}\dot{\epsilon}_{ref} x^2_{ref}}{\alpha \delta T_{ref}}$ & ratio of mechanical rate converted into heat over rate of diffusive processes \\ \hline
$Da_{endo}$ & Endothermic Damk\"{o}hler number & $\frac{A_{endo} h_{endo} \rho_{AB} x^2_{ref}}{\alpha \delta T_{ref}}$ & ratio of endothermic reaction rate over rate of diffusive processes \\ \hline
$Da_{exo}$ & Exothermic Damk\"{o}hler number & $\frac{A_{exo} h_{exo} \rho_{AB} x^2_{ref}}{\alpha \delta T_{ref}}$ & ratio of exothermic reaction rate over rate of diffusive processes \\ \hline
$Gr$ & Gruntfest number & $\frac{\chi\sigma_{ref}}{\alpha \delta T_{ref} (\rho C_p)_m}$ & ratio of mechanical rate converted into heat over rate of diffusive processes \\ \hline
$Da_{endo}$ & Endothermic Damk\"{o}hler number & $\frac{A_{endo} h_{endo} \rho_{AB} x^2_{ref}}{ \delta T_{ref} c_{th,ref}(\rho C_p)_m}$ & ratio of endothermic reaction rate over rate of diffusive processes \\ \hline
$Da_{exo}$ & Exothermic Damk\"{o}hler number & $\frac{A_{exo} h_{exo} \rho_{AB} x^2_{ref}}{\delta T_{ref} c_{th,ref}(\rho C_p)_m}$ & ratio of exothermic reaction rate over rate of diffusive processes \\ \hline
$Ar$ & Arrhenius number & $\Delta H_{mech}/(R T_{ref})$ & Ratio of activation enthalpy over thermal energy \\ \hline
$Ar_F$ & Forward Arrhenius number & $\Delta H_{act}^F/(R T_{ref})$ & Ratio of activation enthalpy of forward reaction over thermal energy \\ \hline
$Ar_R$ & Reverse Arrhenius number & $\Delta H_{act}^R/(R T_{ref})$ & Ratio of activation enthalpy of reverse activation energy over thermal energy \\ \hline
$Le$ & Lewis number & $c_{th}/c_{hy}=\frac{\mu_f\:c_{th}\:\beta^*_m}{\kappa \: \sigma_{ref}}$ & Ratio of thermal over mass diffusivities \\ \hline
$Le$ & Lewis number & $c_{th}/c_{hy}=\frac{\mu_f\:c_{th,ref}\:\beta^*_m}{\kappa \: \sigma_{ref}}$ & Ratio of thermal over mass diffusivities \\ \hline
$Le_{chem}$ & Chemical Lewis number & $\frac{c_{th}\sigma_{ref}\beta_m }{x^2_{ref} A_{endo}}\frac{\rho_{B}}{\rho_{AB}} \frac{M_{AB}}{M_{B}} \left( \frac{\rho_B}{\rho_f} - \frac{\rho_B}{\rho_s}\right)e^{-Ar_F}$ & Ratio of thermal over chemical diffusivity of forward reaction \\ \hline
$\bar{\Lambda}_a$ & Thermal pressurisation coefficient of $a$ & $\frac{\lambda_a}{\beta_m}\frac{\delta \:T_{ref}}{\sigma_{ref}}$ & Normalised thermal pressurisation coefficient, with $\lambda_a$ the thermal expansion of $a$ and $\beta_m$ the mixture's compressibility \\ \hline
$Pe$ & P\'{e}clet number & $x_{ref}V_{ref}/c_{th}$ & Ratio of temperature advection rate over diffusion rate \\
$Pe$ & P\'{e}clet number & $x_{ref}V_{ref}/c_{th,ref}$ & Ratio of temperature advection rate over diffusion rate \\
\noalign{\smallskip}\hline
\end{tabular}
\end{table}
Expand All @@ -321,7 +321,7 @@ \section{Kernels}
\omega_F, \\ \\ \\
0 &= \underbrace{ \pdiff{T}{t} }_{\begin{rotate}{-25}TimeDerivative\end{rotate}}
+ \underbrace{ Pe\:\bar{v_i}\pdiff{T}{i} }_{\begin{rotate}{-25}RedbackThermalConvection\end{rotate}}
- \underbrace{ \pd_{ii}^2 T }_{\begin{rotate}{-25}RedbackThermalDiffusion\end{rotate}}
- \underbrace{ \pd_{ii} c^*_{th}\pd_{ii}T }_{\begin{rotate}{-25}RedbackThermalDiffusion\end{rotate}}
- \underbrace{ Gr \: \sigma_{ij}^{pl}\dot{\epsilon}_{ij}^{\,pl} }_{\begin{rotate}{-25}RedbackMechDissip\end{rotate}}
+ \underbrace{ Da_{endo}\: \omega_F }_{\begin{rotate}{-25}RedbackChemEndo\end{rotate}}
- \underbrace{ Da_{exo}\: \omega_R. }_{\begin{rotate}{-25}RedbackChemExo\end{rotate}} \\ \\ \\
Expand All @@ -347,7 +347,7 @@ \subsection{Time rescaling}

Note that the real time $t$ is then related to the time $t'$ used in the \redback{} simulations by
\begin{equation}
t = \text{time\_factor}\times\frac{x^2_{ref}}{c_{th}}t'
t = \text{time\_factor}\times\frac{x^2_{ref}}{c_{th,ref}}t'
\end{equation}

\section{Porosity}
Expand Down Expand Up @@ -904,17 +904,17 @@ \section{Mass balance}
p^* &= \frac{p_f}{\sigma_{ref}}, \\
T^* &= \frac{T-T_{ref}}{\delta T_{ref}}, \\
x^* &= \frac{x}{x_{ref}}, \\
t^* &= \frac{c_{th}}{x^2_{ref}}t, \\
t^* &= \frac{c_{th,ref}}{x^2_{ref}}t, \\
V^* &= \frac{V}{V_{ref}}.
\end{align}
\end{subequations}

where $c_{th} = \alpha / \left( \rho C_p \right)_m$ is the thermal diffusivity of the mixture. Dividing Eq.~\ref{eq:mixture_mass_balance3} by $\beta_m$ and switching to the normalised variables we get
where $c_{th,ref} = \alpha / \left( \rho C_p \right)_m$ is a reference thermal diffusivity of the mixture. Dividing Eq.~\ref{eq:mixture_mass_balance3} by $\beta_m$ and switching to the normalised variables we get

\begin{multline}
\label{eq:mixture_mass_balance4}
\frac{\sigma_{ref} \: c_{th}}{x^2_{ref}} \frac{\partial p^*}{\partial t^*}
- \frac{\lambda_m \: \delta \: T_{ref} \: c_{th}}{\beta_m\:x^2_{ref}} \frac{\partial T^*}{\partial t^*} \\
\frac{\sigma_{ref} \: c_{th,ref}}{x^2_{ref}} \frac{\partial p^*}{\partial t^*}
- \frac{\lambda_m \: \delta \: T_{ref} \: c_{th,ref}}{\beta_m\:x^2_{ref}} \frac{\partial T^*}{\partial t^*} \\
+ \frac{V_{ref} \: \sigma_{ref}}{x_{ref}}\left[\frac{(1-\phi)\beta_s V^{*(1)}_k + \phi\beta_f V^{*(2)}_k}{\beta_m} \right] \frac{\partial p^*}{\partial x^*_k} \\
- \frac{V_{ref}\:\delta\:T_{ref}}{x_{ref}}\left[\frac{(1-\phi)\lambda_s V^{*(1)}_k + \phi\lambda_f V^{*(2)}_k}{\beta_m} \right] \frac{\partial T*}{\partial x^*_k} \\
+ \frac{V_{ref}}{\beta_m\:x_{ref}} \frac{\partial( \phi (V^{*(2)}_k -V^{*(1)}_k))}{\partial x^*_k}
Expand All @@ -928,11 +928,11 @@ \section{Mass balance}
\label{eq:mixture_mass_balance5}
\frac{\partial p^*}{\partial t^*}
- \overbrace{\frac{\lambda_m \: \delta \: T_{ref}}{\beta_m\:\sigma_{ref}}}^{\Lambda} \frac{\partial T^*}{\partial t^*}
+ \overbrace{\frac{x_{ref}\:V_{ref}}{c_{th}}}^{Pe} \overbrace{\left[\frac{(1-\phi)(\sigma_{ref}\beta_s) V^{*(1)}_k + \phi(\sigma_{ref}\beta_f) V^{*(2)}_k}{\sigma_{ref}\beta_m} \right]}^{\vec{v}^p} \frac{\partial p^*}{\partial x^*_k} \\
- \overbrace{\frac{x_{ref}\:V_{ref}}{c_{th}}}^{Pe} \overbrace{\left[\frac{(1-\phi)(\delta\:T_{ref}\lambda_s) V^{*(1)}_k + \phi(\delta\:T_{ref}\lambda_f) V^{*(2)}_k}{\sigma_{ref}\beta_m} \right]}^{\vec{v}^T} \frac{\partial T*}{\partial x^*_k} \\
+ \frac{x_{ref}\:V_{ref}}{c_{th}\:\beta_m\:\sigma_{ref}} \frac{\partial}{\partial x^*_k} \underbrace{\left[ \phi (V^{*(2)}_k -V^{*(1)}_k)\right]}_{\text{norm. filtration vec.}}
+ \underbrace{\frac{x_{ref}\:V_{ref}}{c_{th}}}_{Pe} \frac{1}{\beta_m\:\sigma_{ref}} \underbrace{\frac{\partial(V^{*(1)}_k)}{\partial x^*_k}}_{\dot{\epsilon}^*_V} \\
= \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1
+ \overbrace{\frac{x_{ref}\:V_{ref}}{c_{th,ref}}}^{Pe} \overbrace{\left[\frac{(1-\phi)(\sigma_{ref}\beta_s) V^{*(1)}_k + \phi(\sigma_{ref}\beta_f) V^{*(2)}_k}{\sigma_{ref}\beta_m} \right]}^{\vec{v}^p} \frac{\partial p^*}{\partial x^*_k} \\
- \overbrace{\frac{x_{ref}\:V_{ref}}{c_{th,ref}}}^{Pe} \overbrace{\left[\frac{(1-\phi)(\delta\:T_{ref}\lambda_s) V^{*(1)}_k + \phi(\delta\:T_{ref}\lambda_f) V^{*(2)}_k}{\sigma_{ref}\beta_m} \right]}^{\vec{v}^T} \frac{\partial T*}{\partial x^*_k} \\
+ \frac{x_{ref}\:V_{ref}}{c_{th,ref}\:\beta_m\:\sigma_{ref}} \frac{\partial}{\partial x^*_k} \underbrace{\left[ \phi (V^{*(2)}_k -V^{*(1)}_k)\right]}_{\text{norm. filtration vec.}}
+ \underbrace{\frac{x_{ref}\:V_{ref}}{c_{th,ref}}}_{Pe} \frac{1}{\beta_m\:\sigma_{ref}} \underbrace{\frac{\partial(V^{*(1)}_k)}{\partial x^*_k}}_{\dot{\epsilon}^*_V} \\
= \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th,ref}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1
\end{multline}

with
Expand All @@ -943,7 +943,7 @@ \section{Mass balance}
\Lambda &= \frac{\lambda_m \: \delta \: T_{ref}}{\beta_m\:\sigma_{ref}}=\frac{\lambda^*_m}{\beta^*_m}, \\
\lambda^*_i &= \delta \: T_{ref} \:\lambda_i, \:\:\: i\in\{s,f,m\}\\
\beta^*_i &= \beta \: \sigma_{ref}, \:\:\: i\in\{s,f,m\}\\
Pe &= \frac{x_{ref}\:V_{ref}}{c_{th}}, \\
Pe &= \frac{x_{ref}\:V_{ref}}{c_{th,ref}}, \\
v^p &= \frac{(1-\phi)\beta^*_s V^{*(1)}_k + \phi\beta^*_f V^{*(2)}_k}{\beta^*_m}, \\
v^T &= \frac{(1-\phi)\lambda^*_s V^{*(1)}_k + \phi\lambda^*_f V^{*(2)}_k}{\beta^*_m}.
\end{align}
Expand All @@ -969,12 +969,12 @@ \section{Mass balance}
- \Lambda \frac{\partial T^*}{\partial t^*}
+ Pe \:\vec{v}^p \frac{\partial p^*}{\partial x^*_k}
- Pe \:\vec{v}^T \frac{\partial T*}{\partial x^*_k} \\
+ \frac{\partial}{\partial x^*_k} \left[ \underbrace{\frac{\kappa \: \sigma_{ref}}{\mu_f\:c_{th}\:\beta^*_m}}_{1/Le} \left( \frac{\partial p^*}{\partial x^*_k} - \underbrace{\rho_f \frac{x_{ref}}{\sigma_{ref}}g}_{(\rho_f\:g)^*}\: \vec{e}_z \right) \right]
+ \frac{\partial}{\partial x^*_k} \left[ \underbrace{\frac{\kappa \: \sigma_{ref}}{\mu_f\:c_{th,ref}\:\beta^*_m}}_{1/Le} \left( \frac{\partial p^*}{\partial x^*_k} - \underbrace{\rho_f \frac{x_{ref}}{\sigma_{ref}}g}_{(\rho_f\:g)^*}\: \vec{e}_z \right) \right]
+ \frac{Pe}{\beta^*_m} \dot{\epsilon}^*_V
= \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1
= \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th,ref}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1
\end{multline}

with the Lewis number defined as $Le = \frac{\mu_f\:c_{th}\:\beta^*_m}{\kappa \: \sigma_{ref}}$ and the normalised gravity term $(\rho_f\:g)^*=\rho_f \frac{x_{ref}}{\sigma_{ref}}g$.
with the Lewis number defined as $Le = \frac{\mu_f\:c_{th,ref}\:\beta^*_m}{\kappa \: \sigma_{ref}}$ and the normalised gravity term $(\rho_f\:g)^*=\rho_f \frac{x_{ref}}{\sigma_{ref}}g$.

Following \citep[][appendix A]{Alevizos2014}
$j_1 = \omega_F.M_B$, $\omega_F=\frac{\rho_1}{M_{AB}}k_F exp{-\Delta H_{act}^F/RT}$ and $\rho_1=(1-\phi)(1-s)\rho_{AB}$, so the volumetric source term $j_1$ can be written as
Expand All @@ -985,8 +985,8 @@ \section{Mass balance}
The RHS term of Eq.~\ref{eq:mixture_mass_balance6} can then be written as
\begin{multline}
\label{eq:mixture_mass_balance_rhs}
\frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1 = \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)\rho_{AB}\frac{M_B}{M_{AB}}(1-\phi)(1-s) k_F exp{(-\Delta H_{act}^F/RT)} \\
= \underbrace{\frac{x^2_{ref}k_F }{\beta_m\:\sigma_{ref}\:c_{th}} \frac{\rho_{AB}}{\rho_B}\frac{M_B}{M_{AB}}\left(\frac{\rho_B}{\rho_f} - \frac{\rho_B}{\rho_s}\right)e^{-Ar_F}}_{1/Le_{chem}} \underbrace{(1-\phi)(1-s) \exp{\left( \frac{Ar_F \:\delta T^*}{1+\delta T^*} \right)}}_{\omega^*_F }
\frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th,ref}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)j_1 = \frac{x^2_{ref}}{\beta_m\:\sigma_{ref}\:c_{th,ref}} \left(\frac{1}{\rho_f} - \frac{1}{\rho_s}\right)\rho_{AB}\frac{M_B}{M_{AB}}(1-\phi)(1-s) k_F exp{(-\Delta H_{act}^F/RT)} \\
= \underbrace{\frac{x^2_{ref}k_F }{\beta_m\:\sigma_{ref}\:c_{th,ref}} \frac{\rho_{AB}}{\rho_B}\frac{M_B}{M_{AB}}\left(\frac{\rho_B}{\rho_f} - \frac{\rho_B}{\rho_s}\right)e^{-Ar_F}}_{1/Le_{chem}} \underbrace{(1-\phi)(1-s) \exp{\left( \frac{Ar_F \:\delta T^*}{1+\delta T^*} \right)}}_{\omega^*_F }
\end{multline}

We then arrive to the full mass balance equation Eq.~\ref{eq:final_system_of_equations_dimensionless}b
Expand All @@ -996,7 +996,7 @@ \section{Energy balance}
The local form of the energy balance equation reads as follows:
\begin{equation}
\label{eq:energy_balance}
(\rho C_p)_m \frac{D^{(m)}T}{Dt} = \alpha \nabla^2 T + \chi \sigma_{ij}.\dot{\epsilon}^{p}_{ij} - \Delta H (\omega_F - \omega_R)
(\rho C_p)_m \frac{D^{(m)}T}{Dt} = \nabla \left(\alpha \nabla T\right) + \chi \sigma_{ij}.\dot{\epsilon}^{p}_{ij} - \Delta H (\omega_F - \omega_R)
\end{equation}
with $\chi$ the Taylor-Quinney coefficient and {\color{red} $\Delta H_{r}=\Delta \mathfrak{E} = \mathfrak{E}_F - \mathfrak{E}_R$ the reaction's specific enthalpy}.
The definitions of the reaction rates $\omega_F$ and $\omega_R$ are (from Eq.~\ref{eq:reaction_rate_total})
Expand All @@ -1011,25 +1011,25 @@ \section{Energy balance}
Using the normalised variable we get
\begin{multline}
\label{eq:energy_balance1}
\frac{\delta T_{ref}\:c_{th}}{x^2_{ref}}(\rho C_p)_m \frac{\partial T^*}{\partial t^*} + \frac{\delta T_{ref}\:v_{ref}}{x_{ref}}(\rho C_p)_m \:\bar{v}\:\frac{\partial T^*}{\partial x^*} \\
- \frac{\alpha\:\delta T_{ref}}{x^2_{ref}} \nabla^2 T - \frac{\sigma_{ref}\:c_{th}}{x^2_{ref}} \chi \sigma^*_{ij}\:\dot{\epsilon}^{*(p)}_{ij} \\
\frac{\delta T_{ref}\:c_{th,ref}}{x^2_{ref}}(\rho C_p)_m \frac{\partial T^*}{\partial t^*} + \frac{\delta T_{ref}\:v_{ref}}{x_{ref}}(\rho C_p)_m \:\bar{v}\:\frac{\partial T^*}{\partial x^*} \\
- \nabla\left(\frac{\alpha\:\delta T_{ref}}{x^2_{ref}} \nabla T\right) - \frac{\sigma_{ref}\:c_{th,ref}}{x^2_{ref}} \chi \sigma^*_{ij}\:\dot{\epsilon}^{*(p)}_{ij} \\
- \Delta H_{r}\:k_F (1 - s)(1 - \phi)\frac{\rho_{AB}}{M_{AB}} e^{-\Delta H_{act}^F/RT} \\
+ \Delta H_{r}\:k_R \:s (1 - \phi) \Delta \phi_{chem} \frac{\rho_{A} \rho_{B}}{\rho_{AB}} \frac{M_{AB}}{M_A M_B} e^{-\Delta H_{act}^R/RT} = 0
\end{multline}

Note that the reference strain rate is also rescaled so
\begin{equation}
\dot{\epsilon}^*_0 = \dot{\epsilon}_0 \frac{x^2_{ref}}{c_{th}}
\dot{\epsilon}^*_0 = \dot{\epsilon}_0 \frac{x^2_{ref}}{c_{th,ref}}
\end{equation}

This leads to
\begin{multline}
\label{eq:energy_balance2}
\frac{\partial T^*}{\partial t^*} + \overbrace{\frac{x_{ref}\:v_{ref}}{c_{th}}}^{Pe}\:\bar{v}\:\frac{\partial T^*}{\partial x^*} - \overbrace{\frac{\alpha}{(\rho C_p)_m}}^{c_{th}}\frac{1}{c_{th}} \nabla^2 T - \overbrace{\frac{\sigma_{ref}}{\delta T_{ref}(\rho C_p)_m} \chi}^{Gr} \sigma^*_{ij}\:\dot{\epsilon}^{*(p)}_{ij} \\
- \underbrace{\frac{\Delta H_{r}\:x^2_{ref} k_F }{\delta T_{ref}\:\alpha}\frac{\rho_{AB}}{M_{AB}}e^{-Ar_F}}_{Da_{endo}} (1 - s)(1 - \phi)e^{\frac{Ar_F\:\delta T^*}{1+\delta T^*}} \\
+ \underbrace{\frac{\Delta H_{r}\:x^2_{ref} k_R}{\delta T_{ref}\alpha} \frac{\rho_{A} \rho_{B}}{\rho_{AB}} \frac{M_{AB}}{M_A M_B} e^{-Ar_R}}_{Da_{exo}}\:s (1 - \phi)\Delta \phi_{chem} e^{\frac{Ar_R\:\delta T^*}{1+\delta T^*}}= 0
\frac{\partial T^*}{\partial t^*} + \overbrace{\frac{x_{ref}\:v_{ref}}{c_{th}}}^{Pe}\:\bar{v}\:\frac{\partial T^*}{\partial x^*} - \nabla\left(\overbrace{\frac{\alpha}{(\rho C_p)_m}}^{c_{th}}\frac{1}{c_{th,ref}} \nabla T\right) - \overbrace{\frac{\sigma_{ref}}{\delta T_{ref}(\rho C_p)_m} \chi}^{Gr} \sigma^*_{ij}\:\dot{\epsilon}^{*(p)}_{ij} \\
- \underbrace{\frac{\Delta H_{r}\:x^2_{ref} k_F }{\delta T_{ref}\:c_{th,ref}(\rho C_p)_m}\frac{\rho_{AB}}{M_{AB}}e^{-Ar_F}}_{Da_{endo}} (1 - s)(1 - \phi)e^{\frac{Ar_F\:\delta T^*}{1+\delta T^*}} \\
+ \underbrace{\frac{\Delta H_{r}\:x^2_{ref} k_R}{\delta T_{ref}\:c_{th,ref}(\rho C_p)_m} \frac{\rho_{A} \rho_{B}}{\rho_{AB}} \frac{M_{AB}}{M_A M_B} e^{-Ar_R}}_{Da_{exo}}\:s (1 - \phi)\Delta \phi_{chem} e^{\frac{Ar_R\:\delta T^*}{1+\delta T^*}}= 0
\end{multline}
and finally to Eq.~\ref{eq:final_system_of_equations_dimensionless}c
and finally to Eq.~\ref{eq:final_system_of_equations_dimensionless}c with $c^*_{th}=\frac{c_{th}}{c_{th,ref}}$.

\section{Jacobians}
Numerical convergence can be helped by providing the jacobians and off-diagonal terms for the kernel residuals, even though \moose{} does not explicitly require them. It is a trial-and-error process to check if the improvement in convergence justifies the cost of computing those terms. See the \moose{} workshop manual on \url{http://mooseframework.org/documentation/} for more details.
Expand Down

0 comments on commit d5ed59a

Please sign in to comment.