Authors: | Resulto Developpement Web Inc. |
---|---|
Version: | 0.5.3 |
This project adds many small features about the regular Django DB result backend. django-celery-fulldbresult provides three main features:
- A result backend that can store enough information about a task to retry it if necessary;
- A memory-efficient alternative to a task's ETA or countdown;
- Django commands to identify tasks that are never completed or that are scheduled but never sent (e.g., if the worker crashes before it can report the result or while a scheduled task is being sent to a worker).
django-celery-fulldbresult works with Python 2.7 and 3.4+. It requires at least Celery 3.1.15, django-celery 3.1.17, and Django 1.8. Python 2 support is dropped as of Django 2.0.
pip install django-celery-fulldbresult
INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'djcelery', 'django_celery_fulldbresult', )
# Required, won't work if set to True CELERY_ALWAYS_EAGER = False CELERY_IGNORE_RESULT = False CELERY_RESULT_BACKEND =\ 'django_celery_fulldbresult.result_backends:DatabaseResultBackend' DJANGO_CELERY_FULLDBRESULT_TRACK_PUBLISH = True DJANGO_CELERY_FULLDBRESULT_OVERRIDE_DJCELERY_ADMIN = True
from djcelery.models import PeriodicTask from django_celery_fulldbresult.admin import ( TaskResultMetaAdmin, CustomPeriodicTaskAdmin) from django_celery_fulldbresult.models import TaskResultMeta class MySite(AdminSite): pass site = MySite() site.register(TaskResultMeta, TaskResultMetaAdmin) site.register(PeriodicTask, CustomPeriodicTaskAdmin)
Note: if you do not use a custom admin site, the admin sections will be automatically registered and you have nothing to do.
Just set these variables in your settings.py file:
CELERY_RESULT_BACKEND = 'django_celery_fulldbresult.result_backends:DatabaseResultBackend' CELERY_IGNORE_RESULT = False
Tasks can be retrieved with the TaskResultMeta
model:
from testcelery.celery import app as celery_app from django_celery_fulldbresult.models import TaskResultMeta from django_celery_fulldbresult import serialization task = TaskResultMeta.objects.all()[0] task_name = task.task task_args = serialization.loads(task.args) task_kwargs = serialization.loads(task.kwargs) celery_app.send_task(task_name, args=task_args, kwargs=task_kwargs)
First, set this variable in your settings.py file:
DJANGO_CELERY_FULLDBRESULT_TRACK_PUBLISH = True
This will save the task in the database with a status of PENDING.
If you want to get all tasks that are more than one-hour old and are still pending:
from datetime import timedelta from django_celery_fulldbresult.models import TaskResultMeta # Returns a QuerySet stale_tasks = TaskResultMeta.objects.get_stale_tasks(timedelta(hours=1))
You can also use the find_stale_tasks
Django command:
$ python manage.py find_stale_tasks --hours 1 Stale tasks: 2015-05-27 14:17:37.096366+00:00 - cf738350-afe8-44f8-9eac-34721581eb61: email_workers.tasks.send_email
Finally, the task results are automatically added to the Django Admin site. You can select task results and retry them: this action will send a copy of each task to the worker using the routes you have defined.
Set this variable in your settings.py file:
DJANGO_CELERY_FULLDBRESULT_USE_JSON = True
This will make sure that results are saved in JSON-compatible string in the database. With a database such as PostgreSQL, you can apply JSON operators on the result column. You can also apply any text-based operators in the extra clause of a Django queryset.
If you use this setting, make sure that the result returned by your task is JSON-serializable.
If some results are not JSON-serializable, you can store their string representation by setting this variable in your settings.py file:
DJANGO_CELERY_FULLDBRESULT_FORCE_JSON = True
This will save the following structure:
{ "value": str(task_result), "forced_json": True }
Set this variable in your settings.py file:
DJANGO_CELERY_FULLDBRESULT_OVERRIDE_DJCELERY_ADMIN = True
This will override small parts of the django-celery Admin to enable the manual launch of PeriodicTask items.
Although Celery allows users to schedule the execution of a task by specifying an ETA or a countdown, the implementation has at least one main limitation with respect to memory consumption: all workers try to load all tasks with an ETA, potentially leading to a large memory consumption.
django-celery-fulldbresult proposes an alternative to regular celery ETA with slightly different semantics:
- When a task is sent with an ETA or a countdown, django-celery-fulldbresult intercepts the task and saves it with a status of SCHEDULED.
- A periodic task checks at a configured interval whether the ETA of a task has expired.
- Once a task is due, a new task with the same parameters but without an ETA is submitted.
- The task id of the new task is saved in the result of the original scheduled task and the state of the original scheduled task is set to SCHEDULED_SENT.
Set this variable in your settings.py file:
DJANGO_CELERY_FULLDBRESULT_SCHEDULE_ETA = True # If you do not want to change your code, set this variable too: DJANGO_CELERY_FULLDBRESULT_MONKEY_PATCH_ASYNC = True
Then create a periodic task in the Django admin or within your code. For example:
- Set the cron to
*/1
minute,*
for everything else. - The task is "django_celery_fulldbresult.tasks.send_scheduled_task"
- No other parameters
That's it. When you call a task with an ETA, django-celery-fulldbresult will automatically intercept the task. For example:
my_task.apply_async(args=[...], kwargs={...}, eta=some_date)
When DJANGO_CELERY_FULLDBRESULT_MONKEY_PATCH_ASYNC
is set to True, the
Task.apply_async is monkey patched to correctly handle scheduled tasks.
This will usually work if you correctly use the @shared_task
or
@app.task
decorators. It will probably fail if you use the legacy @task
decorator though.
If you encounter any problem with the monkey patching, simply set
DJANGO_CELERY_FULLDBRESULT_MONKEY_PATCH_ASYNC
to False and instead, use a
base task:
from celery import shared_task from django_celery_fulldbresult.tasks import ScheduledTask @shared_task(base=ScheduledTask) def do_something(param): print("DOING SOMETHING") return (param, "test")
The task is guaranteed to:
- Be sent at most once.
- Be sent after the ETA has expired (i.e., not before)
If a crash occurs before a task is fully sent, the state of the scheduled task will be SCHEDULED and the task will have a non-null UUID scheduled id. We call these "stale scheduled tasks". It is the user responsibility to manually resubmit stale scheduled tasks once the application recovers from the crash.
You can use the get_stale_scheduled_tasks manager to find stale scheduled tasks.
from datetime import timedelta from django_celery_fulldbresult.models import TaskResultMeta # Returns a QuerySet stale_tasks = TaskResultMeta.objects.get_stale_scheduled_tasks(timedelta(hours=1))
You can also use the find_stale_scheduled_tasks
Django command:
$ python manage.py find_stale_tasks --hours 1 Stale scheduled tasks: 2015-05-27 14:17:37.096366+00:00 - cf738350-afe8-44f8-9eac-34721581eb61: email_workers.tasks.send_email
This software is licensed under the New BSD License. See the LICENSE file in the repository for the full license text.
The following GPG keys can be used to sign tags and release files:
- Resulto Development Team: AEC378AB578FF0FC
- Barthelemy Dagenais: 76320A1B901510C4