-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #39 from priism-center/dev
Merge December 8th
- Loading branch information
Showing
174 changed files
with
10,351 additions
and
1,387 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
set.seed(2) | ||
x <- rbinom(4000, 1, .07) | ||
|
||
z <- rbinom(4000, 1, ifelse(x == 1, .9, .05)) | ||
|
||
y1 <- 240 - 5 - 80*x + rnorm(1000, 0, 5) | ||
y0 <- 240 - 80*x + rnorm(1000, 0, 5) | ||
y <- ifelse(z == 1, y1, y0) | ||
|
||
|
||
# difference in means | ||
fit1 <- lm(y ~ z) # ATE = -50 | ||
fit1 | ||
|
||
# regression | ||
fit2 <- lm(y ~ z + x) # ATE = -5 | ||
fit2 | ||
# with bars | ||
tibble(x, z, y) %>% | ||
group_by(z) %>% | ||
summarise(y_hat = mean(y)) %>% | ||
ggplot(aes(as.factor(z), y_hat, fill = as.factor(z))) + | ||
geom_col(col = 'black') + | ||
scale_fill_manual(values = c(4, 2)) + | ||
theme_bw() | ||
|
||
tibble(x, z, y) %>% | ||
group_by(z) %>% | ||
summarise(y_hat = mean(y)) %>% | ||
ggplot(aes(as.factor(z), y_hat, fill = as.factor(z))) + | ||
geom_col(col = 'black') + | ||
scale_fill_manual(values = c(4, 2)) + | ||
theme_bw() + | ||
geom_segment(aes(x = 2.5, xend = 2.5, y = 189, yend = 239)) + | ||
geom_segment(aes(x = 2.5, xend = 2.47, y = 189, yend = 189)) + | ||
geom_segment(aes(x = 2.5, xend = 2.47, y = 239, yend = 239)) + | ||
geom_label(aes(label = 'Difference in Means = -50.19 minutes!', x = 2.3 , y = 214), show.legend = F, col = 1) + | ||
theme(legend.position = 'bottom') | ||
|
||
|
||
tibble(x, z, y) %>% | ||
group_by(z, x) %>% | ||
summarise(y_hat = mean(y)) %>% | ||
ggplot(aes(as.factor(z), y_hat, fill = as.factor(z))) + | ||
geom_col(col = 'black') + | ||
facet_wrap(~x) + | ||
scale_fill_manual(values = c(4, 2)) + | ||
theme_bw() | ||
|
||
|
||
|
||
# with points | ||
|
||
tibble(x, z, y) %>% | ||
group_by(z) %>% | ||
summarise(y_hat = mean(y)) %>% | ||
mutate(ucl = y_hat + 1.96*sqrt(diag(vcov(fit1)))['z'], | ||
lcl = y_hat - 1.96*sqrt(diag(vcov(fit1)))['z']) %>% | ||
ggplot(aes(as.factor(z), y_hat, col = as.factor(z))) + | ||
geom_point(size = 2) + | ||
geom_segment(aes(x = as.factor(z), xend = as.factor(z), | ||
y = ucl, yend = lcl)) + | ||
geom_segment(aes(x = 1.5, xend = 1.5, y = 239, yend = 189), col = 1) + | ||
geom_label(aes(label = 'Difference in Means = -50.19 minutes!', x = 1.5 , y = 214), show.legend = F, col = 1) + | ||
scale_color_manual(values = c(4, 2)) + | ||
theme_bw() | ||
|
||
|
||
tibble(x, z, y) %>% | ||
group_by(z, x) %>% | ||
summarise(y_hat = mean(y)) %>% | ||
ggplot(aes(as.factor(z), y_hat, col = as.factor(z))) + | ||
geom_point(size = 2) + | ||
facet_wrap(~x) + | ||
#geom_segment(aes(x = 1.5, xend = 1.5, y = 239, yend = 189), col = 1) + | ||
#geom_label(aes(label = 'Difference in Means = -50.19 minutes!', x = 1.5 , y = 214), show.legend = F, col = 1) + | ||
scale_color_manual(values = c(4, 2)) + | ||
theme_bw() | ||
|
||
|
||
|
||
|
||
|
||
### DGP 2 | ||
|
||
age <- c(runif(500, 18, 65), rnorm(1000, 35, 5), runif(500, 20, 37)) | ||
age[age < 18] <- 18 | ||
|
||
get_income <- function(x){ | ||
case_when( | ||
x < 25 ~ rnorm(1, 40, 5), | ||
x < 35 ~ rnorm(1, 60, 10), | ||
x < 45 ~ rnorm(1, 80, 10), | ||
x < 70 ~ rnorm(1, 50, 5) | ||
) | ||
} | ||
|
||
income <- sapply(age, get_income) | ||
|
||
z <- rbinom() | ||
|
||
set.seed(2) | ||
x <- rbinom(4000, 1, .07) | ||
state_p <- c(.3, .1, .05, .05, .025, .025,.025, .025, .02, .02, rep(.009, 40)) | ||
state <- sample(size = 4000, 1:50, replace = T, prob = state_p) | ||
|
||
state_mat <- matrix(nrow = 4000, ncol = 50) | ||
for (i in 1:50) { | ||
state_mat[, i] <- ifelse(state == i,1, 0) | ||
} | ||
|
||
colnames(state_mat) <- paste0('state_', 1:50) | ||
X <- cbind(pro = x, state_mat) | ||
|
||
beta <- c(qnorm(.9), qnorm(runif(50, 0, .3))) | ||
z <- rbinom(4000, 1, pnorm(X %*% beta)) | ||
|
||
y1 <- 240 - 5 - 80*x + rnorm(1000, 0, 5) | ||
y0 <- 240 - 80*x + rnorm(1000, 0, 5) | ||
y <- ifelse(z == 1, y1, y0) | ||
|
||
lm(y ~ z + state_mat) | ||
|
||
sum(z) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
library(tidyverse) | ||
library(bartCause) | ||
|
||
set.seed(5) | ||
# create X | ||
n <- 500 | ||
R <- matrix(nrow = 2, ncol = 2) | ||
diag(R) <- 1 | ||
R[lower.tri(R)] <- c(.85) | ||
R[upper.tri(R)] <- t(R[lower.tri(R)]) | ||
X <- MASS::mvrnorm(n, mu = c(0, 0), R) | ||
interact <- X[, 1]*X[, 2] | ||
X <- cbind(X, interact) | ||
#X <- apply(X, 2, function(i){(i*7) + 76}) | ||
|
||
p.score <- vector(length = n) | ||
|
||
|
||
p.score <- pnorm(-1.4*X[, 1] + 1.4*X[, 2] + .2*X[,3]) | ||
hist(p.score) | ||
|
||
|
||
|
||
|
||
|
||
z <- rbinom(n, 1, p.score) | ||
|
||
dat <- cbind.data.frame(X, z) | ||
|
||
# make y | ||
y0 <- 10 + cbind(rep(1, nrow(X)),X)%*%c(0, 0, 0, .6) + rnorm(n, 0, 1) | ||
y1 <- 10 + cbind(rep(1, nrow(X)),X)%*%c(0, 0, 0, .6) + -.25*sd(y0) + rnorm(n, 0, 1) | ||
y <- ifelse(z == 1, y1, y0) | ||
|
||
unscale <- function(x){ | ||
(x*10) + 150 | ||
} | ||
|
||
X <- apply(X, 2, unscale) | ||
y <- unscale(y) | ||
y1 <- unscale(y1) | ||
y0 <- unscale(y0) | ||
hist(y) | ||
|
||
colnames(X)[1:2] <- c('qualify1', 'qualify2') | ||
colinearity <- data.frame(X[, 1:2], hyperShoe = z,Y0 = y0,Y1 = y1, Y = y) | ||
colinearity <- purrr::map_df(colinearity, function(x) round(x, 0)) | ||
with(colinearity, mean(Y1 - Y0)) | ||
|
||
readr::write_csv(colinearity, 'inst/extdata/colinearity.csv') | ||
|
||
summary(lm(Y ~ hyperShoe + qualify1 + qualify2, data = colinearity)) | ||
|
||
# plots | ||
|
||
colinearity %>% | ||
group_by(hyperShoe) %>% | ||
summarise(mean(qualify1), mean(qualify2)) | ||
|
||
|
||
ggplot(colinearity, aes(qualify2, fill = as.factor(hyperShoe))) + | ||
geom_boxplot() | ||
|
||
|
||
ggplot(colinearity, aes(qualify1, qualify2)) + | ||
geom_point() + | ||
theme_bw() + | ||
labs(title = 'Correlation of qualifying times = .85') | ||
|
||
ggsave('inst/app/www/learn/colinearity/plots/p1.png', device = 'png', height = 5, width = 8) | ||
|
||
|
||
|
||
both <- bartc(Y, hyperShoe, ., data = colinearity, seed = 2) | ||
one_only <- bartCause::bartc(Y, hyperShoe, qualify1, data = colinearity, seed = 2, method.trt = 'none') | ||
two_only <- bartCause::bartc(Y, hyperShoe, qualify2, data = colinearity, seed = 2, method.trt = 'none') | ||
estimates <- rbind(summary(both, 'cate')$estimates, | ||
summary(one_only, 'cate')$estimates, | ||
summary(two_only, 'cate')$estimates) | ||
estimates |
Oops, something went wrong.