Skip to content

Commit

Permalink
Add html content from sphinx
Browse files Browse the repository at this point in the history
  • Loading branch information
thomass-dev committed Oct 23, 2024
1 parent 40d41cf commit bba1990
Show file tree
Hide file tree
Showing 100 changed files with 16,883 additions and 0 deletions.
4 changes: 4 additions & 0 deletions docs/latest/.buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file records the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 064d3c6f5318632d4336e957c486b0de
tags: 645f666f9bcd5a90fca523b33c5a78b7
Empty file added docs/latest/.nojekyll
Empty file.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
"""
=================================
1) Getting started with ``skore``
=================================
This example runs the :ref:`getting_started` guide.
``skore`` UI
------------
This section provides a quick start to the ``skore`` UI, an open-source package that aims to enable data scientists to:
#. Store objects of different types from their Python code: python lists, ``scikit-learn`` fitted pipelines, ``plotly`` figures, and more.
#. Track and visualize these stored objects on a user-friendly dashboard.
#. Export the dashboard to a HTML file.
Initialize a Project and launch the UI
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
From your shell, initialize a skore project, here named ``my_project_gs``, that
will be in your current working directory:
"""

# %%
import subprocess

# remove the project if it already exists
subprocess.run("rm -rf my_project_gs.skore".split())

# create the project
subprocess.run("python3 -m skore create my_project_gs".split())

# %%
# This will create a ``skore`` project directory named ``my_project_gs`` in the
# current directory.
#
# From your shell (in the same directory), start the UI locally:
#
# .. code:: console
#
# python -m skore launch "my_project_gs"
#
# This will automatically open a browser at the UI's location.
#
# Now that the project file exists, we can load it in our notebook so that we can
# read from and write to it:

# %%
from skore import load

my_project_gs = load("my_project_gs.skore")

# %%
# Storing some items
# ^^^^^^^^^^^^^^^^^^
#
# Storing an integer:

# %%
my_project_gs.put("my_int", 3)

# %%
# Here, the name of my stored item is ``my_int`` and the integer value is 3.

# %%
my_project_gs.get("my_int")

# %%
# For a ``pandas`` data frame:

# %%
import numpy as np
import pandas as pd

my_df = pd.DataFrame(np.random.randn(3, 3))

my_project_gs.put("my_df", my_df)

# %%
my_project_gs.get("my_df")

# %%
# For a ``matplotlib`` figure:

# %%
import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
fig, ax = plt.subplots(figsize=(5, 3), layout="constrained")
_ = ax.plot(x)

my_project_gs.put("my_figure", fig)

# %%
# For a ``scikit-learn`` fitted pipeline:

# %%
from sklearn.datasets import load_diabetes
from sklearn.linear_model import Lasso
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

diabetes = load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]
my_pipeline = Pipeline(
[("standard_scaler", StandardScaler()), ("lasso", Lasso(alpha=2))]
)
my_pipeline.fit(X, y)

my_project_gs.put("my_fitted_pipeline", my_pipeline)

# %%
my_project_gs.get("my_fitted_pipeline")

# %%
# Back to the dashboard
# ^^^^^^^^^^^^^^^^^^^^^
#
# #. On the top left, create a new ``View``.
# #. From the ``Elements`` section on the bottom left, you can add stored items to this view, either by double-cliking on them or by doing drag-and-drop.
#
# .. image:: https://raw.githubusercontent.com/sylvaincom/sylvaincom.github.io/master/files/probabl/skore/2024_10_14_skore_demo.gif
# :alt: Getting started with ``skore`` demo
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# 3) Using ``skore``'s cross validate\n\nThis example illustrates the use of :func:`~skore.cross_validate`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import subprocess\n\n# remove the project if it already exists\nsubprocess.run(\"rm -rf my_project_cv.skore\".split())\n\n# create the project\nsubprocess.run(\"python3 -m skore create my_project_cv\".split())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from skore import load\n\nmy_project_gs = load(\"my_project_cv.skore\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn import datasets, linear_model\nfrom skore.cross_validate import cross_validate\n\ndiabetes = datasets.load_diabetes()\nX = diabetes.data[:150]\ny = diabetes.target[:150]\nlasso = linear_model.Lasso()\n\ncv_results = cross_validate(lasso, X, y, cv=3, project=my_project_gs)\n\nmy_project_gs.get_item(\"cross_validation\").plot"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading

0 comments on commit bba1990

Please sign in to comment.