Skip to content

A Machine-Learning Approach for Earthquake Magnitude Estimation

Notifications You must be signed in to change notification settings

profMastermind/MagNet

 
 

Repository files navigation

MagNet

A Machine-Learning Approach for Earthquake Magnitude Estimation

GitHub last commit GitHub stars GitHub followers GitHub forks GitHub watchers Twitter Follow

  • Test results are provided for the performance comparison against other methods.

  • All the waveforms used for the test can be accessed from STEAD (https://github.com/smousavi05/STEAD) using the trace_name.

You can get the paper from here:

Link 1: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL085976

Link 2: https://www.researchgate.net/publication/338184318_A_Machine-Learning_Approach_for_Earthquake_Magnitude_Estimation


Reference:

Mousavi, S. M., & Beroza, G. C. (2019). A Machine‐Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters.

BibTeX:

@article{mousavi2019machine,
  title={A Machine-Learning Approach for Earthquake Magnitude Estimation},
  author={Mousavi, S Mostafa and Beroza, Gregory C},
  journal={Geophysical Research Letters},
  year={2019},
  publisher={Wiley Online Library}
}

The size of an earthquake at its source is measured from the amplitude (or sometimes the duration) of the ground motion recorded on seismic instruments, and is expressed in terms of magnitude. Magnitude is a logarithmic measure and usually is measured based on data recorded by multiple stations after applying some pre‐proccessing and corrections to the raw signals. Here, we introduce the first successful deep‐learning approach to estimate directly the magnitude from raw seismic signals recorded on a single station.

model
7 8

Original After Sensitivity Correction
plots1 plots1_1
plots2 plots2_1
plots4 plots4_1

About

A Machine-Learning Approach for Earthquake Magnitude Estimation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%