Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add correlation plot to examples/.../sir.py #2497

Merged
merged 2 commits into from
May 21, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 35 additions & 2 deletions examples/contrib/epidemiology/sir.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import math

import torch
from torch.distributions import biject_to, constraints

import pyro
from pyro.contrib.epidemiology import OverdispersedSEIRModel, OverdispersedSIRModel, SimpleSEIRModel, SimpleSIRModel
Expand Down Expand Up @@ -90,7 +91,7 @@ def hook_fn(kernel, *unused):
return model.samples


def evaluate(args, samples):
def evaluate(args, model, samples):
# Print estimated values.
names = {"basic_reproduction_number": "R0",
"response_rate": "rho"}
Expand All @@ -107,6 +108,7 @@ def evaluate(args, samples):
import matplotlib.pyplot as plt
import seaborn as sns

# Plot individual histograms.
fig, axes = plt.subplots(len(names), 1, figsize=(5, 2.5 * len(names)))
axes[0].set_title("Posterior parameter estimates")
for ax, (name, key) in zip(axes, names.items()):
Expand All @@ -118,6 +120,7 @@ def evaluate(args, samples):
ax.legend(loc="best")
plt.tight_layout()

# Plot pairwise joint distributions for selected variables.
covariates = [(name, samples[name]) for name in names.values()]
for i, aux in enumerate(samples["auxiliary"].unbind(-2)):
covariates.append(("aux[{},0]".format(i), aux[:, 0]))
Expand All @@ -137,6 +140,36 @@ def evaluate(args, samples):
plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)

# Plot Pearson correlation for every pair of unconstrained variables.
def unconstrain(constraint, value):
value = biject_to(constraint).inv(value)
return value.reshape(args.num_samples, -1)

covariates = [
("R1", unconstrain(constraints.positive, samples["R0"])),
("rho", unconstrain(constraints.unit_interval, samples["rho"]))]
if "k" in samples:
covariates.append(
("k", unconstrain(constraints.positive, samples["k"])))
constraint = constraints.interval(-0.5, model.population + 0.5)
for name, aux in zip(model.compartments, samples["auxiliary"].unbind(-2)):
covariates.append((name, unconstrain(constraint, aux)))
x = torch.cat([v for _, v in covariates], dim=-1)
x -= x.mean(0)
x /= x.std(0)
x = x.t().matmul(x)
x /= args.num_samples
x.clamp_(min=-1, max=1)
plt.figure(figsize=(8, 8))
plt.imshow(x, cmap="bwr")
ticks = torch.tensor([0] + [v.size(-1) for _, v in covariates]).cumsum(0)
ticks = (ticks[1:] + ticks[:-1]) / 2
plt.yticks(ticks, [name for name, _ in covariates])
plt.xticks(())
plt.tick_params(length=0)
plt.title("Pearson correlation (unconstrained coordinates)")
plt.tight_layout()


def predict(args, model, truth):
samples = model.predict(forecast=args.forecast)
Expand Down Expand Up @@ -183,7 +216,7 @@ def main(args):
samples = infer(args, model)

# Evaluate fit.
evaluate(args, samples)
evaluate(args, model, samples)

# Predict latent time series.
if args.forecast:
Expand Down