Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tangential (Delaunay) Lifting (PointCloud to Simplicial) #59

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
12 changes: 12 additions & 0 deletions configs/datasets/toy_point_cloud.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
data_domain: point_cloud
data_type: toy_dataset
data_name: toy_point_cloud
data_dir: datasets/${data_domain}/${data_type}

# Dataset parameters
num_points: 8
num_classes: 2

num_features: 1
task: classification
loss_type: cross_entropy
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
transform_type: "lifting"
transform_name: "TangentialLifting"
feature_lifting: ProjectionSum
32 changes: 32 additions & 0 deletions modules/data/load/loaders.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
load_cell_complex_dataset,
load_hypergraph_pickle_dataset,
load_manual_graph,
load_point_cloud,
load_simplicial_dataset,
)

Expand Down Expand Up @@ -204,3 +205,34 @@ def load(
torch_geometric.data.Dataset object containing the loaded data.
"""
return load_hypergraph_pickle_dataset(self.parameters)


class PointCloudLoader(AbstractLoader):
r"""Loader for point-cloud dataset.
Parameters
----------
parameters: DictConfig
Configuration parameters
"""

def __init__(self, parameters: DictConfig):
super().__init__(parameters)
self.parameters = parameters
self.data_dir = self.parameters["data_dir"]
if "num_classes" not in self.cfg:
self.cfg["num_classes"] = 2

def load(self) -> torch_geometric.data.Dataset:
r"""Load point-cloud dataset.
Parameters
----------
None
Returns
-------
torch_geometric.data.Dataset
torch_geometric.data.Dataset object containing the loaded data.
"""
data = load_point_cloud(
num_classes=self.cfg["num_classes"], num_points=self.cfg["num_points"]
)
return CustomDataset([data], self.cfg["data_dir"])
27 changes: 19 additions & 8 deletions modules/data/utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,16 +50,16 @@ def get_complex_connectivity(complex, max_rank, signed=False):
)
except ValueError: # noqa: PERF203
if connectivity_info == "incidence":
connectivity[f"{connectivity_info}_{rank_idx}"] = (
generate_zero_sparse_connectivity(
m=practical_shape[rank_idx - 1], n=practical_shape[rank_idx]
)
connectivity[
f"{connectivity_info}_{rank_idx}"
] = generate_zero_sparse_connectivity(
m=practical_shape[rank_idx - 1], n=practical_shape[rank_idx]
)
else:
connectivity[f"{connectivity_info}_{rank_idx}"] = (
generate_zero_sparse_connectivity(
m=practical_shape[rank_idx], n=practical_shape[rank_idx]
)
connectivity[
f"{connectivity_info}_{rank_idx}"
] = generate_zero_sparse_connectivity(
m=practical_shape[rank_idx], n=practical_shape[rank_idx]
)
connectivity["shape"] = practical_shape
return connectivity
Expand Down Expand Up @@ -283,6 +283,17 @@ def load_hypergraph_pickle_dataset(cfg):
return data


def load_point_cloud(num_classes: int = 2, num_points: int = 18, seed: int = 42):
"""Create a toy point cloud dataset"""
rng = np.random.default_rng(seed)

points = torch.tensor(rng.random((num_points, 2)), dtype=torch.float)
classes = torch.tensor(rng.integers(num_classes, size=num_points), dtype=torch.long)
features = torch.tensor(rng.integers(3, size=(num_points, 1)), dtype=torch.float)

return torch_geometric.data.Data(x=features, y=classes, pos=points)


def load_manual_graph():
"""Create a manual graph for testing purposes."""
# Define the vertices (just 8 vertices)
Expand Down
5 changes: 5 additions & 0 deletions modules/transforms/data_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,9 @@
from modules.transforms.liftings.graph2simplicial.clique_lifting import (
SimplicialCliqueLifting,
)
from modules.transforms.liftings.pointcloud2simplicial.tangential_lifting import (
TangentialLifting,
)

TRANSFORMS = {
# Graph -> Hypergraph
Expand All @@ -23,6 +26,8 @@
"SimplicialCliqueLifting": SimplicialCliqueLifting,
# Graph -> Cell Complex
"CellCycleLifting": CellCycleLifting,
# Point-cloud -> Simplicial Complex
"TangentialLifting": TangentialLifting,
# Feature Liftings
"ProjectionSum": ProjectionSum,
# Data Manipulations
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import gudhi as gd
import torch
import torch_geometric
from toponetx.classes import SimplicialComplex

from modules.data.utils.utils import get_complex_connectivity
from modules.transforms.liftings.pointcloud2simplicial.base import (
PointCloud2SimplicialLifting,
)


class TangentialLifting(PointCloud2SimplicialLifting):
# intrinsic dimension of the manifold set to 1 by default
def __init__(self, intrisic_dim=2, **kwargs):
super().__init__(**kwargs)
self.intrisic_dim = intrisic_dim

def _get_lifted_topology(self, simplicial_complex: SimplicialComplex) -> dict:
lifted_topology = get_complex_connectivity(simplicial_complex, self.complex_dim)

lifted_topology["x_0"] = torch.stack(
list(simplicial_complex.get_simplex_attributes("features", 0).values())
)

return lifted_topology

def lift_topology(self, data: torch_geometric.data.Data, **kwargs) -> dict:

# initialize tangential complex object
tangential_complex = gd.TangentialComplex(self.intrisic_dim, data.pos)

# build the complex
tangential_complex.compute_tangential_complex()

simplicial_complex = SimplicialComplex().from_gudhi(tangential_complex.create_simplex_tree())

self.complex_dim = simplicial_complex.dim

node_features = {i: data.x[i, :] for i in range(data.x.shape[0])}
simplicial_complex.set_simplex_attributes(node_features, name="features")

return self._get_lifted_topology(simplicial_complex)
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
import torch

from modules.data.utils.utils import load_point_cloud
from modules.transforms.liftings.pointcloud2simplicial.tangential_lifting import (
TangentialLifting,
)


class TestTangentialLifting:
"""Test the DelaunayLifting class."""

def setup_method(self):
# Load the point cloud
SEED = 42
self.data = load_point_cloud(num_points=5, seed=SEED)

# Initialise the TangentialLifting class
self.lifting_signed = TangentialLifting(signed=True)
self.lifting_unsigned = TangentialLifting(signed=False)

def test_lift_topology(self):
"""Test the lift_topology method."""

# Test the lift_topology method
lifted_data_signed = self.lifting_signed.forward(self.data.clone())
lifted_data_unsigned = self.lifting_unsigned.forward(self.data.clone())

expected_incidence_1 = torch.tensor(
[
[1., 1., 1., 0., 0., 0., 0.],
[1., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1., 1., 0.],
[0., 1., 0., 1., 1., 0., 1.],
[0., 0., 1., 0., 0., 1., 1.]
]
)

assert (
abs(expected_incidence_1) == lifted_data_unsigned.incidence_1.to_dense()
).all(), "Something is wrong with unsigned incidence_1 (nodes to edges)."
assert (
expected_incidence_1 == lifted_data_signed.incidence_1.to_dense()
).all(), "Something is wrong with signed incidence_1 (nodes to edges)."

expected_incidence_2 = torch.tensor(
[
[1., 0., 0.],
[1., 1., 0.],
[0., 1., 0.],
[1., 0., 0.],
[0., 0., 1.],
[0., 0., 1.],
[0., 1., 1.]
]
)

assert (
abs(expected_incidence_2) == lifted_data_unsigned.incidence_2.to_dense()
).all(), "Something is wrong with unsigned incidence_2 (edges to triangles)."
assert (
expected_incidence_2 == lifted_data_signed.incidence_2.to_dense()
).all(), "Something is wrong with signed incidence_2 (edges to triangles)."
274 changes: 274 additions & 0 deletions tutorials/pointcloud2simplicial/tangential_lifting.ipynb

Large diffs are not rendered by default.

Loading