-
Notifications
You must be signed in to change notification settings - Fork 325
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Vincent Moens <[email protected]> Co-authored-by: Vincent Moens <[email protected]>
- Loading branch information
1 parent
824f6d1
commit a0a47a9
Showing
14 changed files
with
2,163 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
#!/bin/bash | ||
|
||
#SBATCH --job-name=crossq | ||
#SBATCH --ntasks=32 | ||
#SBATCH --cpus-per-task=1 | ||
#SBATCH --gres=gpu:1 | ||
#SBATCH --output=slurm_logs/crossq_%j.txt | ||
#SBATCH --error=slurm_errors/crossq_%j.txt | ||
|
||
current_commit=$(git rev-parse --short HEAD) | ||
project_name="torchrl-example-check-$current_commit" | ||
group_name="crossq" | ||
export PYTHONPATH=$(dirname $(dirname $PWD)) | ||
python $PYTHONPATH/sota-implementations/crossq/crossq.py \ | ||
logger.backend=wandb \ | ||
logger.project_name="$project_name" \ | ||
logger.group_name="$group_name" | ||
|
||
# Capture the exit status of the Python command | ||
exit_status=$? | ||
# Write the exit status to a file | ||
if [ $exit_status -eq 0 ]; then | ||
echo "${group_name}_${SLURM_JOB_ID}=success" >> report.log | ||
else | ||
echo "${group_name}_${SLURM_JOB_ID}=error" >> report.log | ||
fi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
# environment and task | ||
env: | ||
name: HalfCheetah-v4 | ||
task: "" | ||
library: gym | ||
max_episode_steps: 1000 | ||
seed: 42 | ||
|
||
# collector | ||
collector: | ||
total_frames: 1_000_000 | ||
init_random_frames: 25000 | ||
frames_per_batch: 1000 | ||
init_env_steps: 1000 | ||
device: cpu | ||
env_per_collector: 1 | ||
reset_at_each_iter: False | ||
|
||
# replay buffer | ||
replay_buffer: | ||
size: 1000000 | ||
prb: 0 # use prioritized experience replay | ||
scratch_dir: null | ||
|
||
# optim | ||
optim: | ||
utd_ratio: 1.0 | ||
policy_update_delay: 3 | ||
gamma: 0.99 | ||
loss_function: l2 | ||
lr: 1.0e-3 | ||
weight_decay: 0.0 | ||
batch_size: 256 | ||
alpha_init: 1.0 | ||
adam_eps: 1.0e-8 | ||
beta1: 0.5 | ||
beta2: 0.999 | ||
|
||
# network | ||
network: | ||
batch_norm_momentum: 0.01 | ||
warmup_steps: 100000 | ||
critic_hidden_sizes: [2048, 2048] | ||
actor_hidden_sizes: [256, 256] | ||
critic_activation: relu | ||
actor_activation: relu | ||
default_policy_scale: 1.0 | ||
scale_lb: 0.1 | ||
device: "cuda:0" | ||
|
||
# logging | ||
logger: | ||
backend: wandb | ||
project_name: torchrl_example_crossQ | ||
group_name: null | ||
exp_name: ${env.name}_CrossQ | ||
mode: online | ||
eval_iter: 25000 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
"""CrossQ Example. | ||
This is a simple self-contained example of a CrossQ training script. | ||
It supports state environments like MuJoCo. | ||
The helper functions are coded in the utils.py associated with this script. | ||
""" | ||
import time | ||
|
||
import hydra | ||
|
||
import numpy as np | ||
import torch | ||
import torch.cuda | ||
import tqdm | ||
from torchrl._utils import logger as torchrl_logger | ||
from torchrl.envs.utils import ExplorationType, set_exploration_type | ||
|
||
from torchrl.record.loggers import generate_exp_name, get_logger | ||
from utils import ( | ||
log_metrics, | ||
make_collector, | ||
make_crossQ_agent, | ||
make_crossQ_optimizer, | ||
make_environment, | ||
make_loss_module, | ||
make_replay_buffer, | ||
) | ||
|
||
|
||
@hydra.main(version_base="1.1", config_path=".", config_name="config") | ||
def main(cfg: "DictConfig"): # noqa: F821 | ||
device = cfg.network.device | ||
if device in ("", None): | ||
if torch.cuda.is_available(): | ||
device = torch.device("cuda:0") | ||
else: | ||
device = torch.device("cpu") | ||
device = torch.device(device) | ||
|
||
# Create logger | ||
exp_name = generate_exp_name("CrossQ", cfg.logger.exp_name) | ||
logger = None | ||
if cfg.logger.backend: | ||
logger = get_logger( | ||
logger_type=cfg.logger.backend, | ||
logger_name="crossq_logging", | ||
experiment_name=exp_name, | ||
wandb_kwargs={ | ||
"mode": cfg.logger.mode, | ||
"config": dict(cfg), | ||
"project": cfg.logger.project_name, | ||
"group": cfg.logger.group_name, | ||
}, | ||
) | ||
|
||
torch.manual_seed(cfg.env.seed) | ||
np.random.seed(cfg.env.seed) | ||
|
||
# Create environments | ||
train_env, eval_env = make_environment(cfg) | ||
|
||
# Create agent | ||
model, exploration_policy = make_crossQ_agent(cfg, train_env, device) | ||
|
||
# Create CrossQ loss | ||
loss_module = make_loss_module(cfg, model) | ||
|
||
# Create off-policy collector | ||
collector = make_collector(cfg, train_env, exploration_policy.eval(), device=device) | ||
|
||
# Create replay buffer | ||
replay_buffer = make_replay_buffer( | ||
batch_size=cfg.optim.batch_size, | ||
prb=cfg.replay_buffer.prb, | ||
buffer_size=cfg.replay_buffer.size, | ||
scratch_dir=cfg.replay_buffer.scratch_dir, | ||
device="cpu", | ||
) | ||
|
||
# Create optimizers | ||
( | ||
optimizer_actor, | ||
optimizer_critic, | ||
optimizer_alpha, | ||
) = make_crossQ_optimizer(cfg, loss_module) | ||
|
||
# Main loop | ||
start_time = time.time() | ||
collected_frames = 0 | ||
pbar = tqdm.tqdm(total=cfg.collector.total_frames) | ||
|
||
init_random_frames = cfg.collector.init_random_frames | ||
num_updates = int( | ||
cfg.collector.env_per_collector | ||
* cfg.collector.frames_per_batch | ||
* cfg.optim.utd_ratio | ||
) | ||
prb = cfg.replay_buffer.prb | ||
eval_iter = cfg.logger.eval_iter | ||
frames_per_batch = cfg.collector.frames_per_batch | ||
eval_rollout_steps = cfg.env.max_episode_steps | ||
|
||
sampling_start = time.time() | ||
update_counter = 0 | ||
delayed_updates = cfg.optim.policy_update_delay | ||
for _, tensordict in enumerate(collector): | ||
sampling_time = time.time() - sampling_start | ||
|
||
# Update weights of the inference policy | ||
collector.update_policy_weights_() | ||
|
||
pbar.update(tensordict.numel()) | ||
|
||
tensordict = tensordict.reshape(-1) | ||
current_frames = tensordict.numel() | ||
# Add to replay buffer | ||
replay_buffer.extend(tensordict.cpu()) | ||
collected_frames += current_frames | ||
|
||
# Optimization steps | ||
training_start = time.time() | ||
if collected_frames >= init_random_frames: | ||
( | ||
actor_losses, | ||
alpha_losses, | ||
q_losses, | ||
) = ([], [], []) | ||
for _ in range(num_updates): | ||
|
||
# Update actor every delayed_updates | ||
update_counter += 1 | ||
update_actor = update_counter % delayed_updates == 0 | ||
# Sample from replay buffer | ||
sampled_tensordict = replay_buffer.sample() | ||
if sampled_tensordict.device != device: | ||
sampled_tensordict = sampled_tensordict.to(device) | ||
else: | ||
sampled_tensordict = sampled_tensordict.clone() | ||
|
||
# Compute loss | ||
q_loss, *_ = loss_module.qvalue_loss(sampled_tensordict) | ||
q_loss = q_loss.mean() | ||
# Update critic | ||
optimizer_critic.zero_grad() | ||
q_loss.backward() | ||
optimizer_critic.step() | ||
q_losses.append(q_loss.detach().item()) | ||
|
||
if update_actor: | ||
actor_loss, metadata_actor = loss_module.actor_loss( | ||
sampled_tensordict | ||
) | ||
actor_loss = actor_loss.mean() | ||
alpha_loss = loss_module.alpha_loss( | ||
log_prob=metadata_actor["log_prob"] | ||
).mean() | ||
|
||
# Update actor | ||
optimizer_actor.zero_grad() | ||
actor_loss.backward() | ||
optimizer_actor.step() | ||
|
||
# Update alpha | ||
optimizer_alpha.zero_grad() | ||
alpha_loss.backward() | ||
optimizer_alpha.step() | ||
|
||
actor_losses.append(actor_loss.detach().item()) | ||
alpha_losses.append(alpha_loss.detach().item()) | ||
|
||
# Update priority | ||
if prb: | ||
replay_buffer.update_priority(sampled_tensordict) | ||
|
||
training_time = time.time() - training_start | ||
episode_end = ( | ||
tensordict["next", "done"] | ||
if tensordict["next", "done"].any() | ||
else tensordict["next", "truncated"] | ||
) | ||
episode_rewards = tensordict["next", "episode_reward"][episode_end] | ||
|
||
# Logging | ||
metrics_to_log = {} | ||
if len(episode_rewards) > 0: | ||
episode_length = tensordict["next", "step_count"][episode_end] | ||
metrics_to_log["train/reward"] = episode_rewards.mean().item() | ||
metrics_to_log["train/episode_length"] = episode_length.sum().item() / len( | ||
episode_length | ||
) | ||
if collected_frames >= init_random_frames: | ||
metrics_to_log["train/q_loss"] = np.mean(q_losses).item() | ||
metrics_to_log["train/actor_loss"] = np.mean(actor_losses).item() | ||
metrics_to_log["train/alpha_loss"] = np.mean(alpha_losses).item() | ||
metrics_to_log["train/sampling_time"] = sampling_time | ||
metrics_to_log["train/training_time"] = training_time | ||
|
||
# Evaluation | ||
if abs(collected_frames % eval_iter) < frames_per_batch: | ||
with set_exploration_type(ExplorationType.MODE), torch.no_grad(): | ||
eval_start = time.time() | ||
eval_rollout = eval_env.rollout( | ||
eval_rollout_steps, | ||
model[0], | ||
auto_cast_to_device=True, | ||
break_when_any_done=True, | ||
) | ||
eval_time = time.time() - eval_start | ||
eval_reward = eval_rollout["next", "reward"].sum(-2).mean().item() | ||
metrics_to_log["eval/reward"] = eval_reward | ||
metrics_to_log["eval/time"] = eval_time | ||
if logger is not None: | ||
log_metrics(logger, metrics_to_log, collected_frames) | ||
sampling_start = time.time() | ||
|
||
collector.shutdown() | ||
end_time = time.time() | ||
execution_time = end_time - start_time | ||
torchrl_logger.info(f"Training took {execution_time:.2f} seconds to finish") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.