Skip to content

Move util function for creating VBE KJT to the VbModelInput class #2906

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 116 additions & 8 deletions torchrec/distributed/test_utils/test_input.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@
# pyre-strict

from dataclasses import dataclass
from typing import cast, List, Optional, Tuple, Union
from typing import cast, Dict, List, Optional, Tuple, Union

import torch
from tensordict import TensorDict
from torchrec.distributed.embedding_types import EmbeddingTableConfig
from torchrec.modules.embedding_configs import EmbeddingBagConfig, EmbeddingConfig
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
from torchrec.sparse.jagged_tensor import _to_offsets, KeyedJaggedTensor
from torchrec.streamable import Pipelineable


Expand Down Expand Up @@ -535,13 +535,121 @@ def _create_batched_standard_kjts(
return global_kjt, local_kjts


# @dataclass
# class VbModelInput(ModelInput):
# pass
@dataclass
class VbModelInput(ModelInput):

@staticmethod
def _create_variable_batch_kjt(
keys: List[str],
world_size: int,
global_constant_batch: bool,
values_per_rank_per_feature: Dict[int, Dict[str, torch.Tensor]],
lengths_per_rank_per_feature: Dict[int, Dict[str, torch.Tensor]],
strides_per_rank_per_feature: Dict[int, Dict[str, int]],
inverse_indices_per_rank_per_feature: Dict[int, Dict[str, torch.Tensor]],
weights_per_rank_per_feature: Optional[Dict[int, Dict[str, torch.Tensor]]],
use_offsets: bool,
indices_dtype: torch.dtype,
offsets_dtype: torch.dtype,
lengths_dtype: torch.dtype,
) -> KeyedJaggedTensor:
global_values = []
global_lengths = []
global_stride_per_key_per_rank = []
inverse_indices_per_feature_per_rank = []
global_weights = [] if weights_per_rank_per_feature is not None else None

for key in keys:
sum_stride = 0
for rank in range(world_size):
global_values.append(values_per_rank_per_feature[rank][key])
global_lengths.append(lengths_per_rank_per_feature[rank][key])
if weights_per_rank_per_feature is not None:
assert global_weights is not None
global_weights.append(weights_per_rank_per_feature[rank][key])
sum_stride += strides_per_rank_per_feature[rank][key]
inverse_indices_per_feature_per_rank.append(
inverse_indices_per_rank_per_feature[rank][key]
)

global_stride_per_key_per_rank.append([sum_stride])

inverse_indices_list: List[torch.Tensor] = []

for key in keys:
accum_batch_size = 0
inverse_indices = []

for rank in range(world_size):
inverse_indices.append(
inverse_indices_per_rank_per_feature[rank][key] + accum_batch_size
)
accum_batch_size += strides_per_rank_per_feature[rank][key]

inverse_indices_list.append(torch.cat(inverse_indices))

global_inverse_indices = (keys, torch.stack(inverse_indices_list))

if global_constant_batch:
global_offsets = []

for length in global_lengths:
global_offsets.append(_to_offsets(length))

reindexed_lengths = []

for length, indices in zip(
global_lengths, inverse_indices_per_feature_per_rank
):
reindexed_lengths.append(torch.index_select(length, 0, indices))

lengths = torch.cat(reindexed_lengths)
reindexed_values, reindexed_weights = [], []

for i, (values, offsets, indices) in enumerate(
zip(global_values, global_offsets, inverse_indices_per_feature_per_rank)
):
for idx in indices:
reindexed_values.append(values[offsets[idx] : offsets[idx + 1]])
if global_weights is not None:
reindexed_weights.append(
global_weights[i][offsets[idx] : offsets[idx + 1]]
)

values = torch.cat(reindexed_values)
weights = (
torch.cat(reindexed_weights) if global_weights is not None else None
)
global_stride_per_key_per_rank = None
global_inverse_indices = None

else:
values = torch.cat(global_values)
lengths = torch.cat(global_lengths)
weights = torch.cat(global_weights) if global_weights is not None else None

if use_offsets:
offsets = torch.cat(
[torch.tensor([0], dtype=offsets_dtype), lengths.cumsum(0)]
)
return KeyedJaggedTensor(
keys=keys,
values=values,
offsets=offsets,
weights=weights,
stride_per_key_per_rank=global_stride_per_key_per_rank,
inverse_indices=global_inverse_indices,
)
else:
return KeyedJaggedTensor(
keys=keys,
values=values,
lengths=lengths,
weights=weights,
stride_per_key_per_rank=global_stride_per_key_per_rank,
inverse_indices=global_inverse_indices,
)

# @staticmethod
# def _create_variable_batch_kjt() -> KeyedJaggedTensor:
# pass

# @staticmethod
# def _merge_variable_batch_kjts(kjts: List[KeyedJaggedTensor]) -> KeyedJaggedTensor:
Expand Down
Loading