-
Notifications
You must be signed in to change notification settings - Fork 44
Not ready for review #148
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Not ready for review #148
Conversation
Codecov Report
@@ Coverage Diff @@
## main #148 +/- ##
==========================================
- Coverage 90.58% 85.69% -4.90%
==========================================
Files 59 59
Lines 4440 4446 +6
==========================================
- Hits 4022 3810 -212
- Misses 418 636 +218
... and 6 files with indirect coverage changes 📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more |
0a9b334
to
ad399ef
Compare
ad399ef
to
813097c
Compare
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: 77ed51cd66efd98fd485c3bbb0cd20216fb294a9
813097c
to
cab00d0
Compare
This pull request was exported from Phabricator. Differential Revision: D48135206 |
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: 1b62888ca317d4ce84f8cefc95d8f83fc27da6c4
cab00d0
to
8ed06e1
Compare
This pull request was exported from Phabricator. Differential Revision: D48135206 |
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: f3e3006c940026f7cfc5176ed611faba21683faf
8ed06e1
to
8c7ed95
Compare
This pull request was exported from Phabricator. Differential Revision: D48135206 |
1 similar comment
This pull request was exported from Phabricator. Differential Revision: D48135206 |
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: 46cbe45ebc8e135740b9d752abc2c1a2a1042cc9
8c7ed95
to
5285da5
Compare
This pull request was exported from Phabricator. Differential Revision: D48135206 |
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: 15d5cb361416a0e890278ced430d00d4b9dfb6f2
5285da5
to
9693701
Compare
Summary: Pull Request resolved: pytorch#148 Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972 ``` tests/test_uvm_tensor.py::test_uvm_tensor FAILED [100%] =================================== FAILURES =================================== _______________________________ test_uvm_tensor ________________________________ pytest.mark.cpu_and_gpu def test_uvm_tensor() -> None: if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE: uvm_tensor = torch.rand( (64, 64), > out=new_managed_tensor( torch.empty(0, dtype=torch.float32, device="cuda:0"), [64, 64], ), ) tests/test_uvm_tensor.py:25: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')> args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {} def __call__(self, *args, **kwargs): # overloading __call__ to ensure torch.ops.foo.bar() # is still callable from JIT # We save the function ptr as the `op` attribute on # OpOverloadPacket to access it here. > return self._op(*args, **kwargs or {}) E RuntimeError: CUDA error: invalid device ordinal E CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. E For debugging consider passing CUDA_LAUNCH_BLOCKING=1. E Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ``` Differential Revision: D48135206 fbshipit-source-id: 5f75bb830e3cb9057b5803fe09d83e391c60a365
This pull request was exported from Phabricator. Differential Revision: D48135206 |
9693701
to
6f01187
Compare
Summary:
Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
Differential Revision: D48135206