Skip to content

Commit

Permalink
2023-10-21 nightly release (68161e9)
Browse files Browse the repository at this point in the history
  • Loading branch information
pytorchbot committed Oct 21, 2023
1 parent cddbcc7 commit eb23217
Show file tree
Hide file tree
Showing 5 changed files with 33 additions and 13 deletions.
2 changes: 1 addition & 1 deletion .github/scripts/unittest.sh
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ set -euo pipefail
eval "$($(which conda) shell.bash hook)" && conda deactivate && conda activate ci

echo '::group::Install testing utilities'
pip install --progress-bar=off pytest pytest-mock pytest-cov
pip install --progress-bar=off pytest pytest-mock pytest-cov expecttest
echo '::endgroup::'

python test/smoke_test.py
Expand Down
1 change: 1 addition & 0 deletions test/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ def pytest_configure(config):
config.addinivalue_line("markers", "needs_cuda: mark for tests that rely on a CUDA device")
config.addinivalue_line("markers", "needs_mps: mark for tests that rely on a MPS device")
config.addinivalue_line("markers", "dont_collect: mark for tests that should not be collected")
config.addinivalue_line("markers", "opcheck_only_one: only opcheck one parametrization")


def pytest_collection_modifyitems(items):
Expand Down
5 changes: 5 additions & 0 deletions test/optests_failures_dict.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"_description": "This is a dict containing failures for tests autogenerated by generate_opcheck_tests. For more details, please see https://docs.google.com/document/d/1Pj5HRZvdOq3xpFpbEjUZp2hBovhy7Wnxw14m6lF2154/edit",
"_version": 1,
"data": {}
}
12 changes: 1 addition & 11 deletions test/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,16 +25,6 @@
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"


@contextlib.contextmanager
def disable_tf32():
previous = torch.backends.cudnn.allow_tf32
torch.backends.cudnn.allow_tf32 = False
try:
yield
finally:
torch.backends.cudnn.allow_tf32 = previous


def list_model_fns(module):
return [get_model_builder(name) for name in list_models(module)]

Expand Down Expand Up @@ -681,7 +671,7 @@ def test_vitc_models(model_fn, dev):
test_classification_model(model_fn, dev)


@disable_tf32() # see: https://github.com/pytorch/vision/issues/7618
@torch.backends.cudnn.flags(allow_tf32=False) # see: https://github.com/pytorch/vision/issues/7618
@pytest.mark.parametrize("model_fn", list_model_fns(models))
@pytest.mark.parametrize("dev", cpu_and_cuda())
def test_classification_model(model_fn, dev):
Expand Down
26 changes: 25 additions & 1 deletion test/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
import torch
import torch.fx
import torch.nn.functional as F
import torch.testing._internal.optests as optests
from common_utils import assert_equal, cpu_and_cuda, cpu_and_cuda_and_mps, needs_cuda, needs_mps
from PIL import Image
from torch import nn, Tensor
Expand All @@ -19,6 +20,14 @@
from torchvision.models.feature_extraction import get_graph_node_names


OPTESTS = [
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
]


# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
Expand Down Expand Up @@ -462,7 +471,7 @@ def test_boxes_shape(self):

@pytest.mark.parametrize("aligned", (True, False))
@pytest.mark.parametrize("device", cpu_and_cuda_and_mps())
@pytest.mark.parametrize("x_dtype", (torch.float16, torch.float32, torch.float64), ids=str)
@pytest.mark.parametrize("x_dtype", (torch.float16, torch.float32, torch.float64)) # , ids=str)
@pytest.mark.parametrize("contiguous", (True, False))
@pytest.mark.parametrize("deterministic", (True, False))
def test_forward(self, device, contiguous, deterministic, aligned, x_dtype, rois_dtype=None):
Expand Down Expand Up @@ -712,6 +721,7 @@ def _create_tensors_with_iou(self, N, iou_thresh):

@pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.opcheck_only_one()
def test_nms_ref(self, iou, seed):
torch.random.manual_seed(seed)
err_msg = "NMS incompatible between CPU and reference implementation for IoU={}"
Expand All @@ -732,6 +742,7 @@ def test_nms_input_errors(self):

@pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
@pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10)))
@pytest.mark.opcheck_only_one()
def test_qnms(self, iou, scale, zero_point):
# Note: we compare qnms vs nms instead of qnms vs reference implementation.
# This is because with the int conversion, the trick used in _create_tensors_with_iou
Expand Down Expand Up @@ -759,6 +770,7 @@ def test_qnms(self, iou, scale, zero_point):
),
)
@pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
@pytest.mark.opcheck_only_one()
def test_nms_gpu(self, iou, device, dtype=torch.float64):
dtype = torch.float32 if device == "mps" else dtype
tol = 1e-3 if dtype is torch.half else 1e-5
Expand All @@ -778,6 +790,7 @@ def test_nms_gpu(self, iou, device, dtype=torch.float64):
@needs_cuda
@pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
@pytest.mark.parametrize("dtype", (torch.float, torch.half))
@pytest.mark.opcheck_only_one()
def test_autocast(self, iou, dtype):
with torch.cuda.amp.autocast():
self.test_nms_gpu(iou=iou, dtype=dtype, device="cuda")
Expand All @@ -789,6 +802,7 @@ def test_autocast(self, iou, dtype):
pytest.param("mps", marks=pytest.mark.needs_mps),
),
)
@pytest.mark.opcheck_only_one()
def test_nms_float16(self, device):
boxes = torch.tensor(
[
Expand All @@ -805,6 +819,7 @@ def test_nms_float16(self, device):
assert_equal(keep32, keep16)

@pytest.mark.parametrize("seed", range(10))
@pytest.mark.opcheck_only_one()
def test_batched_nms_implementations(self, seed):
"""Make sure that both implementations of batched_nms yield identical results"""
torch.random.manual_seed(seed)
Expand All @@ -830,6 +845,15 @@ def test_batched_nms_implementations(self, seed):
torch.testing.assert_close(empty, ops.batched_nms(empty, None, None, None))


optests.generate_opcheck_tests(
testcase=TestNMS,
namespaces=["torchvision"],
failures_dict_path=os.path.join(os.path.dirname(__file__), "optests_failures_dict.json"),
additional_decorators=[],
test_utils=OPTESTS,
)


class TestDeformConv:
dtype = torch.float64

Expand Down

0 comments on commit eb23217

Please sign in to comment.