Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PSRoiPool: SymInt support + meta-implem #8062

Merged
merged 10 commits into from
Oct 30, 2023
1 change: 1 addition & 0 deletions test/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,7 @@ def func(z):
@needs_cuda
@pytest.mark.parametrize("x_dtype", (torch.float, torch.half))
@pytest.mark.parametrize("rois_dtype", (torch.float, torch.half))
@pytest.mark.opcheck_only_one()
def test_autocast(self, x_dtype, rois_dtype):
with torch.cuda.amp.autocast():
self.test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)
Expand Down
34 changes: 34 additions & 0 deletions torchvision/_meta_registrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,40 @@ def meta_roi_align_backward(
return grad.new_empty((batch_size, channels, height, width))


@register_meta("ps_roi_pool")
def meta_ps_roi_pool(input, rois, spatial_scale, pooled_height, pooled_width):
torch._check(rois.size(1) == 5, lambda: "rois must have shape as Tensor[K, 5]")
torch._check(
input.dtype == rois.dtype,
lambda: (
"Expected tensor for input to have the same type as tensor for rois; "
f"but type {input.dtype} does not equal {rois.dtype}"
),
)
channels = input.size(1)
torch._check(
channels % (pooled_height * pooled_width) == 0,
"input channels must be a multiple of pooling height * pooling width",
)
num_rois = rois.size(0)
out_size = (num_rois, channels // (pooled_height * pooled_width), pooled_height, pooled_width)
return input.new_empty(out_size), torch.empty(out_size, device="meta", dtype=torch.int32)


@register_meta("_ps_roi_pool_backward")
def meta_ps_roi_pool_backward(
grad, rois, channel_mapping, spatial_scale, pooled_height, pooled_width, batch_size, channels, height, width
):
torch._check(
grad.dtype == rois.dtype,
lambda: (
"Expected tensor for grad to have the same type as tensor for rois; "
f"but type {grad.dtype} does not equal {rois.dtype}"
),
)
return grad.new_empty((batch_size, channels, height, width))


@torch._custom_ops.impl_abstract("torchvision::nms")
def meta_nms(dets, scores, iou_threshold):
torch._check(dets.dim() == 2, lambda: f"boxes should be a 2d tensor, got {dets.dim()}D")
Expand Down
56 changes: 28 additions & 28 deletions torchvision/csrc/ops/autograd/ps_roi_pool_kernel.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,15 @@ class PSROIPoolFunction : public torch::autograd::Function<PSROIPoolFunction> {
const torch::autograd::Variable& input,
const torch::autograd::Variable& rois,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width) {
c10::SymInt pooled_height,
c10::SymInt pooled_width) {
ctx->saved_data["spatial_scale"] = spatial_scale;
ctx->saved_data["pooled_height"] = pooled_height;
ctx->saved_data["pooled_width"] = pooled_width;
ctx->saved_data["input_shape"] = input.sizes();
ctx->saved_data["input_shape"] = input.sym_sizes();
at::AutoDispatchBelowADInplaceOrView g;
auto result =
ps_roi_pool(input, rois, spatial_scale, pooled_height, pooled_width);
auto result = ps_roi_pool_symint(
input, rois, spatial_scale, pooled_height, pooled_width);

auto output = std::get<0>(result);
auto channel_mapping = std::get<1>(result);
Expand All @@ -40,18 +40,18 @@ class PSROIPoolFunction : public torch::autograd::Function<PSROIPoolFunction> {
auto saved = ctx->get_saved_variables();
auto rois = saved[0];
auto channel_mapping = saved[1];
auto input_shape = ctx->saved_data["input_shape"].toIntList();
auto grad_in = detail::_ps_roi_pool_backward(
auto input_shape = ctx->saved_data["input_shape"].toList();
auto grad_in = detail::_ps_roi_pool_backward_symint(
grad_output[0],
rois,
channel_mapping,
ctx->saved_data["spatial_scale"].toDouble(),
ctx->saved_data["pooled_height"].toInt(),
ctx->saved_data["pooled_width"].toInt(),
input_shape[0],
input_shape[1],
input_shape[2],
input_shape[3]);
ctx->saved_data["pooled_height"].toSymInt(),
ctx->saved_data["pooled_width"].toSymInt(),
input_shape[0].get().toSymInt(),
input_shape[1].get().toSymInt(),
input_shape[2].get().toSymInt(),
input_shape[3].get().toSymInt());

return {
grad_in,
Expand All @@ -72,14 +72,14 @@ class PSROIPoolBackwardFunction
const torch::autograd::Variable& rois,
const torch::autograd::Variable& channel_mapping,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width,
int64_t batch_size,
int64_t channels,
int64_t height,
int64_t width) {
c10::SymInt pooled_height,
c10::SymInt pooled_width,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
at::AutoDispatchBelowADInplaceOrView g;
auto grad_in = detail::_ps_roi_pool_backward(
auto grad_in = detail::_ps_roi_pool_backward_symint(
grad,
rois,
channel_mapping,
Expand All @@ -105,8 +105,8 @@ std::tuple<at::Tensor, at::Tensor> ps_roi_pool_autograd(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width) {
c10::SymInt pooled_height,
c10::SymInt pooled_width) {
auto result = PSROIPoolFunction::apply(
input, rois, spatial_scale, pooled_height, pooled_width);

Expand All @@ -118,12 +118,12 @@ at::Tensor ps_roi_pool_backward_autograd(
const at::Tensor& rois,
const at::Tensor& channel_mapping,
double spatial_scale,
int64_t pooled_height,
int64_t pooled_width,
int64_t batch_size,
int64_t channels,
int64_t height,
int64_t width) {
c10::SymInt pooled_height,
c10::SymInt pooled_width,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
return PSROIPoolBackwardFunction::apply(
grad,
rois,
Expand Down
45 changes: 43 additions & 2 deletions torchvision/csrc/ops/ps_roi_pool.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,19 @@ std::tuple<at::Tensor, at::Tensor> ps_roi_pool(
return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}

std::tuple<at::Tensor, at::Tensor> ps_roi_pool_symint(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width) {
C10_LOG_API_USAGE_ONCE("torchvision.csrc.ops.ps_roi_pool.ps_roi_pool");
static auto op = c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::ps_roi_pool", "")
.typed<decltype(ps_roi_pool_symint)>();
return op.call(input, rois, spatial_scale, pooled_height, pooled_width);
}

namespace detail {

at::Tensor _ps_roi_pool_backward(
Expand Down Expand Up @@ -50,13 +63,41 @@ at::Tensor _ps_roi_pool_backward(
width);
}

at::Tensor _ps_roi_pool_backward_symint(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& channel_mapping,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width) {
static auto op =
c10::Dispatcher::singleton()
.findSchemaOrThrow("torchvision::_ps_roi_pool_backward", "")
.typed<decltype(_ps_roi_pool_backward_symint)>();
return op.call(
grad,
rois,
channel_mapping,
spatial_scale,
pooled_height,
pooled_width,
batch_size,
channels,
height,
width);
}

} // namespace detail

TORCH_LIBRARY_FRAGMENT(torchvision, m) {
m.def(TORCH_SELECTIVE_SCHEMA(
"torchvision::ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)"));
"torchvision::ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, SymInt pooled_height, SymInt pooled_width) -> (Tensor, Tensor)"));
m.def(TORCH_SELECTIVE_SCHEMA(
"torchvision::_ps_roi_pool_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int batch_size, int channels, int height, int width) -> Tensor"));
"torchvision::_ps_roi_pool_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, SymInt pooled_height, SymInt pooled_width, SymInt batch_size, SymInt channels, SymInt height, SymInt width) -> Tensor"));
}

} // namespace ops
Expand Down
19 changes: 19 additions & 0 deletions torchvision/csrc/ops/ps_roi_pool.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,13 @@ VISION_API std::tuple<at::Tensor, at::Tensor> ps_roi_pool(
int64_t pooled_height,
int64_t pooled_width);

VISION_API std::tuple<at::Tensor, at::Tensor> ps_roi_pool_symint(
const at::Tensor& input,
const at::Tensor& rois,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width);

namespace detail {

at::Tensor _ps_roi_pool_backward(
Expand All @@ -27,6 +34,18 @@ at::Tensor _ps_roi_pool_backward(
int64_t height,
int64_t width);

at::Tensor _ps_roi_pool_backward_symint(
const at::Tensor& grad,
const at::Tensor& rois,
const at::Tensor& channel_mapping,
double spatial_scale,
c10::SymInt pooled_height,
c10::SymInt pooled_width,
c10::SymInt batch_size,
c10::SymInt channels,
c10::SymInt height,
c10::SymInt width);

} // namespace detail

} // namespace ops
Expand Down
Loading