Skip to content

Commit

Permalink
refactor: remove unused variables
Browse files Browse the repository at this point in the history
  • Loading branch information
Edoardo-Pedicillo committed Feb 14, 2025
1 parent 0608bbd commit e2abfd3
Show file tree
Hide file tree
Showing 3 changed files with 2 additions and 30 deletions.
29 changes: 1 addition & 28 deletions src/qibocal/protocols/classification.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from dataclasses import dataclass, field, fields
from dataclasses import dataclass, field

import numpy as np
import numpy.typing as npt
Expand Down Expand Up @@ -68,19 +68,6 @@ class SingleShotClassificationResults(Results):
effective_temperature: dict[QubitId, float] = field(default_factory=dict)
"""Qubit effective temperature from Boltzmann distribution."""

def __contains__(self, key: QubitId):
"""Checking if key is in Results.
Overwritten because classifiers_hpars is empty when running
the default_classifier.
"""
return all(
key in getattr(self, field.name)
for field in fields(self)
if isinstance(getattr(self, field.name), dict)
and field.name != "classifiers_hpars"
)


def _acquisition(
params: SingleShotClassificationParameters,
Expand Down Expand Up @@ -174,7 +161,6 @@ def train_classifier(data, qubit):
qubit_data = data.data[qubit]
i_values = qubit_data["i"]
q_values = qubit_data["q"]
iq_values = np.stack((i_values, q_values), axis=-1)
states = qubit_data["state"]
model = QubitFit()
model.fit(i_values, q_values, states)
Expand All @@ -184,28 +170,15 @@ def train_classifier(data, qubit):
def _fit(data: SingleShotClassificationData) -> SingleShotClassificationResults:
qubits = data.qubits

benchmark_tables = {}
models_dict = {}
y_tests = {}
x_tests = {}
hpars = {}
threshold = {}
rotation_angle = {}
mean_gnd_states = {}
mean_exc_states = {}
fidelity = {}
assignment_fidelity = {}
y_test_predict = {}
grid_preds_dict = {}
effective_temperature = {}
for qubit in qubits:
# qubit_data = data.data[qubit]
# i_values = qubit_data["i"]
# q_values = qubit_data["q"]
# iq_values = np.stack((i_values, q_values), axis=-1)
# states = qubit_data["state"]
# model = QubitFit()
# model.fit(i_values, q_values, states)
model = train_classifier(data, qubit)
grid = evaluate_grid(qubit_data)
grid_preds = model.predict(grid)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from dataclasses import dataclass, field
from os import error

import numpy as np
import numpy.typing as npt
Expand Down
2 changes: 1 addition & 1 deletion src/qibocal/protocols/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1044,14 +1044,14 @@ def plot_results(data: Data, qubit: QubitId, qubit_states: list, fit: Results):
"""
figures = []
qubit_data = data.data[qubit]
grid = evaluate_grid(qubit_data)

fig = make_subplots(
rows=1,
cols=1,
)

if fit is not None:
grid = evaluate_grid(qubit_data)
predictions = fit.grid_preds[qubit]
fig.add_trace(
go.Contour(
Expand Down

0 comments on commit e2abfd3

Please sign in to comment.