Turbo-Geth is a fork of Go-Ethereum with focus on performance.
NB! In-depth links are marked by the microscope sign (🔬)
Disclaimer: this software is currenly a tech preview. We will do our best to keep it stable and make no breaking changes but we don't guarantee anything. Things can and will break.
The current version is currently based on Go-Ethereum 1.9.15.
About 830 GB of free disk storage (630 GB state storage, 200GB temp files)
16 or 32 GB of RAM is recommended
🔬 more info on disk storage is here here)
> git clone --recurse-submodules -j8 https://github.com/ledgerwatch/turbo-geth.git && cd turbo-geth
> make tg
> ./build/bin/tg
🔬 See more detailed overview of functionality and current limitations. It is being updated on recurring basis.
Flat KV storage. Turbo-Geth uses a key-value database and storing accounts and storage in a simple way.
🔬 See our detailed DB walkthrough here.
Preprocessing. For some operations, turbo-geth uses temporary files to preprocess data before inserting it into the main DB. That reduces write amplification and DB inserts sometimes are orders of magnitude quicker.
🔬 See our detailed ETL explanation here.
Plain state.
Single accounts/state trie. Turbo-Geth uses a single Merkle trie for both accounts and the storage.
Turbo-Geth uses a rearchitected full sync algorithm from Go-Ethereum that is split into "stages".
🔬 See more detailed explanation in the Staged Sync Readme
It uses the same network primitives and is compatible with regular go-ethereum nodes that are using full sync, you do not need any special sync capabilities for turbo-geth to sync.
When reimagining the full sync, we focused on batching data together and minimize DB overwrites. That makes it possible to sync Ethereum mainnet in under 2 days if you have a fast enough network connection and an SSD drive.
Examples of stages are:
-
Downloading headers;
-
Downloading block bodies;
-
Executing blocks;
-
Validating root hashes and building intermediate hashes for the state Merkle trie;
-
And more...
In turbo-geth RPC calls are extracted out of the main binary into a separate daemon. This daemon can use both local or remote DBs. That means, that this RPC daemon doesn't have to be running on the same machine as the main turbo-geth binary or it can run from a snapshot of a database for read-only calls.
🔬 See RPC-Daemon docs
For local DB
> make rpcdaemon
> ./build/bin/rpcdaemon --chaindata ~/Library/TurboGeth/tg/chaindata --http.api=eth,debug,net
For remote DB
Run turbo-geth in one terminal window
> ./build/bin/tg --private.api.addr=localhost:9090
Run RPC daemon
> ./build/bin/rpcdaemon --private.api.addr=localhost:9090
Supported JSON-RPC calls (eth, debug, net, web3):
For a details on the implementation status of each command, see this table.
docker-compose up prometheus grafana
, detailed docs.
Next command starts: turbo-geth on port 30303, rpcdaemon 8545, prometheus 9090, grafana 3000
docker-compose build
XDG_DATA_HOME=/preferred/data/folder docker-compose up
The main discussions are happening on our Discord server.
To get an invite, send an email to tg [at] torquem.ch
with your name, occupation,
a brief explanation of why you want to join the Discord, and how you heard about Turbo-Geth.
Send an email to security [at] torquem.ch
.
Core contributors:
-
Alexey Akhunov (@realLedgerwatch)
-
Alex Sharov (AskAlexSharov)
-
Andrew Ashikhmin (yperbasis)
-
Boris Petrov (b00ris)
-
Eugene Danilenko (JekaMas)
-
Igor Mandrigin (@mandrigin)
-
Giulio Rebuffo
-
Thomas Jay Rush (@tjayrush)
Thanks to:
-
All contributors of Turbo-Geth
-
All contributors of Go-Ethereum
-
Our special respect and graditude is to the core team of Go-Ethereum. Keep up the great job!
Happy testing! 🥤
TurboGeth's internal DB (LMDB) using MemoryMap
- when OS does manage all read, write, cache
operations instead of Application
(linux, windows)
htop
on column res
shows memory of "App + OS used to hold page cache for given App",
but it's not informative, because if htop
says that app using 90% of memory you still
can run 3 more instances of app on the same machine - because most of that 90%
is "OS pages cache".
OS automatically free this cache any time it needs memory.
Smaller "page cache size" may not impact performance of TurboGeth at all.
Next tools show correct memory usage of TurboGeth:
vmmap -summary PID | grep -i "Physical footprint"
. Withoutgrep
you can see details -section MALLOC ZONE column Resident Size
shows App memory usage,section REGION TYPE column Resident Size
shows OS pages cache size.Prometheus
dashboard shows memory of Go app without OS pages cache (make prometheus
, open in browserlocalhost:3000
, credentialsadmin/admin
)cat /proc/<PID>/smaps
TurboGeth uses ~4Gb of RAM during genesis sync and < 1Gb during normal work. OS pages cache can utilize unlimited amount of memory.
Warning: Multiple instances of TG on same machine will touch Disk concurrently, it impacts performance - one of main TG optimisations: "reduce Disk random access". "Blocks Execution stage" still does much random reads - this is reason why it's slowest stage. We do not recommend run multiple genesis syncs on same Disk. If genesis sync passed, then it's fine to run multiple TG on same Disk.