Skip to content

Commit

Permalink
Merge pull request #1766 from JuliaLWang8/pandas-future-proofing
Browse files Browse the repository at this point in the history
Pandas future proofing
  • Loading branch information
ValueRaider authored Dec 10, 2023
2 parents c60e590 + 0bcd2dc commit 5805029
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 5 deletions.
9 changes: 9 additions & 0 deletions tests/ticker.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,6 +222,15 @@ def test_actions(self):
self.assertIsInstance(data, pd.DataFrame, "data has wrong type")
self.assertFalse(data.empty, "data is empty")

def test_reconstruct_intervals_batch(self):
data = self.ticker.history(period="3mo", interval="1d", prepost=True, repair=True)
self.assertIsInstance(data, pd.DataFrame, "data has wrong type")
self.assertFalse(data.empty, "data is empty")

reconstructed = self.ticker._reconstruct_intervals_batch(data, "1wk", True)
self.assertIsInstance(reconstructed, pd.DataFrame, "data has wrong type")
self.assertFalse(data.empty, "data is empty")


class TestTickerEarnings(unittest.TestCase):
session = None
Expand Down
10 changes: 5 additions & 5 deletions yfinance/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -699,26 +699,26 @@ def _reconstruct_intervals_batch(self, df, interval, prepost, tag=-1):
# But in case are repairing a chunk of bad 1d data, back/forward-fill the
# good div-adjustments - not perfect, but a good backup.
div_adjusts[f_tag] = np.nan
div_adjusts = div_adjusts.fillna(method='bfill').fillna(method='ffill')
div_adjusts = div_adjusts.ffill().bfill()
for idx in np.where(f_tag)[0]:
dt = df_new_calib.index[idx]
n = len(div_adjusts)
if df_new.loc[dt, "Dividends"] != 0:
if idx < n - 1:
# Easy, take div-adjustment from next-day
div_adjusts[idx] = div_adjusts[idx + 1]
div_adjusts[idx] = div_adjusts.iloc[idx + 1]
else:
# Take previous-day div-adjustment and reverse todays adjustment
div_adj = 1.0 - df_new_calib["Dividends"].iloc[idx] / df_new_calib['Close'].iloc[
idx - 1]
div_adjusts[idx] = div_adjusts[idx - 1] / div_adj
div_adjusts[idx] = div_adjusts.iloc[idx - 1] / div_adj
else:
if idx > 0:
# Easy, take div-adjustment from previous-day
div_adjusts[idx] = div_adjusts[idx - 1]
div_adjusts[idx] = div_adjusts.iloc[idx - 1]
else:
# Must take next-day div-adjustment
div_adjusts[idx] = div_adjusts[idx + 1]
div_adjusts[idx] = div_adjusts.iloc[idx + 1]
if df_new_calib["Dividends"].iloc[idx + 1] != 0:
div_adjusts[idx] *= 1.0 - df_new_calib["Dividends"].iloc[idx + 1] / \
df_new_calib['Close'].iloc[idx]
Expand Down

0 comments on commit 5805029

Please sign in to comment.