Skip to content

Commit

Permalink
[Ray backend] Better error when pg topology is bad. (vllm-project#7584)
Browse files Browse the repository at this point in the history
Co-authored-by: youkaichao <[email protected]>
  • Loading branch information
rkooo567 and youkaichao authored Aug 23, 2024
1 parent b903e1b commit c01a6cb
Show file tree
Hide file tree
Showing 3 changed files with 197 additions and 9 deletions.
1 change: 1 addition & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,7 @@ steps:
commands:
- # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py
- VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py
- # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up)
- VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py
Expand Down
64 changes: 64 additions & 0 deletions tests/distributed/test_multi_node_assignment.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
"""Make sure ray assigns GPU workers to the correct node.
Run:
```sh
cd $VLLM_PATH/tests
pytest distributed/test_multi_node_assignment.py
```
"""

import os

import pytest
import ray
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy

from vllm import initialize_ray_cluster
from vllm.config import ParallelConfig
from vllm.executor.ray_utils import _wait_until_pg_removed
from vllm.utils import get_ip

VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"


@pytest.mark.skipif(not VLLM_MULTI_NODE,
reason="Need at least 2 nodes to run the test.")
def test_multi_node_assignment() -> None:

# NOTE: important to keep this class definition here
# to let ray use cloudpickle to serialize it.
class Actor:

def get_ip(self):
return get_ip()

for _ in range(10):
config = ParallelConfig(1, 2)
initialize_ray_cluster(config)

current_ip = get_ip()
workers = []
for bundle_id, bundle in enumerate(
config.placement_group.bundle_specs):
if not bundle.get("GPU", 0):
continue
scheduling_strategy = PlacementGroupSchedulingStrategy(
placement_group=config.placement_group,
placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_id,
)

worker = ray.remote(
num_cpus=0,
num_gpus=1,
scheduling_strategy=scheduling_strategy,
)(Actor).remote()
worker_ip = ray.get(worker.get_ip.remote())
assert worker_ip == current_ip
workers.append(worker)

for worker in workers:
ray.kill(worker)

_wait_until_pg_removed(config.placement_group)
141 changes: 132 additions & 9 deletions vllm/executor/ray_utils.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
from typing import List, Optional, Tuple, Union
import time
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union

import msgspec

Expand All @@ -11,9 +13,13 @@
from vllm.worker.worker_base import WorkerWrapperBase

logger = init_logger(__name__)
PG_WAIT_TIMEOUT = 1800

try:
import ray
from ray._private.state import available_resources_per_node
from ray.util import placement_group_table
from ray.util.placement_group import PlacementGroup

class RayWorkerWrapper(WorkerWrapperBase):
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
Expand Down Expand Up @@ -98,6 +104,106 @@ def assert_ray_available():
"`pip install ray`.") from ray_import_err


def _verify_bundles(placement_group: "PlacementGroup",
parallel_config: ParallelConfig, device_str: str):
"""Verify a given placement group has bundles located in the right place.
There are 2 rules.
- Warn if all tensor parallel workers cannot fit in a single node.
- Fail if driver node is not included in a placement group.
"""
assert ray.is_initialized(), (
"Ray is not initialized although distributed-executor-backend is ray.")
pg_data = placement_group_table(placement_group)
# bundle_idx -> node_id
bundle_to_node_ids = pg_data["bundles_to_node_id"]
# bundle_idx -> bundle (e.g., {"GPU": 1})
bundles = pg_data["bundles"]
# node_id -> List of bundle (e.g., {"GPU": 1})
node_id_to_bundle: Dict[str, List[Dict[str, float]]] = defaultdict(list)

for bundle_idx, node_id in bundle_to_node_ids.items():
node_id_to_bundle[node_id].append(bundles[bundle_idx])
driver_node_id = ray.get_runtime_context().get_node_id()

if driver_node_id not in node_id_to_bundle:
raise RuntimeError(
f"driver node id {driver_node_id} is not included in a placement "
f"group {placement_group.id}. Node id -> bundles "
f"{node_id_to_bundle}. "
"You don't have enough GPUs available in a current node. Check "
"`ray status` to see if you have available GPUs in a node "
f"{driver_node_id} before starting an vLLM engine.")

for node_id, bundles in node_id_to_bundle.items():
if len(bundles) < parallel_config.tensor_parallel_size:
logger.warning(
"tensor_parallel_size=%d "
"is bigger than a reserved number of %ss (%d "
"%ss) in a node %s. Tensor parallel workers can be "
"spread out to 2+ nodes which can degrade the performance "
"unless you have fast interconnect across nodes, like "
"Infiniband. To resolve this issue, make sure you have more "
"than %d GPUs available at each node.",
parallel_config.tensor_parallel_size, device_str, len(bundles),
device_str, node_id, parallel_config.tensor_parallel_size)


def _wait_until_pg_ready(current_placement_group: "PlacementGroup"):
"""Wait until a placement group is ready.
It prints the informative log messages if the placement group is
not created within time.
"""
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
placement_group_specs = current_placement_group.bundle_specs

s = time.time()
pg_ready_ref = current_placement_group.ready()
wait_interval = 10
while time.time() - s < PG_WAIT_TIMEOUT:
ready, _ = ray.wait([pg_ready_ref], timeout=wait_interval)
if len(ready) > 0:
break

# Exponential backoff for warning print.
wait_interval *= 2
logger.info(
"Waiting for creating a placement group of specs for "
"%d seconds. specs=%s. Check "
"`ray status` to see if you have enough resources.",
int(time.time() - s), placement_group_specs)

try:
ray.get(pg_ready_ref, timeout=0)
except ray.exceptions.GetTimeoutError:
raise ValueError(
"Cannot provide a placement group of "
f"{placement_group_specs=} within {PG_WAIT_TIMEOUT} seconds. See "
"`ray status` to make sure the cluster has enough resources."
) from None


def _wait_until_pg_removed(current_placement_group: "PlacementGroup"):
ray.util.remove_placement_group(current_placement_group)
s = time.time()
wait_interval = 10
while time.time() - s < PG_WAIT_TIMEOUT:
pg = ray.util.get_current_placement_group()
if pg is None:
break

# Exponential backoff for warning print.
wait_interval *= 2
logger.info(
"Waiting for removing a placement group of specs for "
"%d seconds.", int(time.time() - s))
time.sleep(wait_interval)


def initialize_ray_cluster(
parallel_config: ParallelConfig,
ray_address: Optional[str] = None,
Expand Down Expand Up @@ -156,15 +262,32 @@ def initialize_ray_cluster(
f"The number of required {device_str}s exceeds the total "
f"number of available {device_str}s in the placement group.")
# Create a new placement group
placement_group_specs = ([{
device_str: 1
}] * parallel_config.world_size)
placement_group_specs: List[Dict[str, float]] = ([{
device_str: 1.0
} for _ in range(parallel_config.world_size)])

# vLLM engine is also a worker to execute model with an accelerator,
# so it requires to have the device in a current node. Check if
# the current node has at least one device.
current_ip = get_ip()
current_node_id = ray.get_runtime_context().get_node_id()
current_node_resource = available_resources_per_node()[current_node_id]
if current_node_resource.get(device_str, 0) < 1:
raise ValueError(
f"Current node has no {device_str} available. "
f"{current_node_resource=}. vLLM engine cannot start without "
f"{device_str}. Make sure you have at least 1 {device_str} "
f"available in a node {current_node_id=} {current_ip=}.")
# This way, at least bundle is required to be created in a current
# node.
placement_group_specs[0][f"node:{current_ip}"] = 0.001

# By default, Ray packs resources as much as possible.
current_placement_group = ray.util.placement_group(
placement_group_specs)
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
ray.get(current_placement_group.ready(), timeout=1800)
placement_group_specs, strategy="PACK")
_wait_until_pg_ready(current_placement_group)

assert current_placement_group is not None
_verify_bundles(current_placement_group, parallel_config, device_str)
# Set the placement group in the parallel config
parallel_config.placement_group = current_placement_group

0 comments on commit c01a6cb

Please sign in to comment.