We follow the evaluation of OANet. Downloading the 4 test scenes used in OANet : buckingham_palace , notre_dame_front_facade, reichstag, sacre_coeur.
Once it is downloaded, saved it into ../../data
, the file structure should be :
./RANSAC-Flow/data/YFCC
├── images/
│ ├── buckingham_palace/
│ ├── notre_dame_front_facade/
│ ├── reichstag/
│ └── sacre_coeur/
└── pairs/
├── buckingham_palace-te-1000-pairs.pkl
├── notre_dame_front_facade-te-1000-pairs.pkl
├── reichstag-te-1000-pairs.pkl
└── sacre_coeur-te-1000-pairs.pkl
Running :
python evaluation.py --outDir MOCO --segNet YFCC
To get results with our fine alignment :
python getResults.py --multiH --ransac --coarsePth MOCO_Coarse --finePth MOCO_Fine --maskPth MOCO_Fine --outRes moco.json --scene 0
python getResults.py --multiH --ransac --coarsePth MOCO_Coarse --finePth MOCO_Fine --maskPth MOCO_Fine --outRes moco.json --scene 1
python getResults.py --multiH --ransac --coarsePth MOCO_Coarse --finePth MOCO_Fine --maskPth MOCO_Fine --outRes moco.json --scene 2
python getResults.py --multiH --ransac --coarsePth MOCO_Coarse --finePth MOCO_Fine --maskPth MOCO_Fine --outRes moco.json --scene 3
Adding --imageNet
when running evaluation.py
with the above commands.
According to the implementation of OANet, the mAP@20 in the paper is the average over AP < 5, AP < 10, AP < 15, AP < 20; mAP@10 in the paper in the average over standard Acc < 5, Acc < 10. For more details, we refer to this part of code in OANet.
Running our code will give you the AP < 5, AP < 10, AP < 15, AP < 20 (average over the 4 scenes). Then to compare to the numbers in the paper, one need to compute the average.
We thank to Jiahui Zhang to point it out.