Skip to content

Commit

Permalink
Update app.py
Browse files Browse the repository at this point in the history
  • Loading branch information
reichaves authored Oct 1, 2024
1 parent 04fea78 commit 5077cbf
Showing 1 changed file with 37 additions and 18 deletions.
55 changes: 37 additions & 18 deletions app.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
# -*- coding: utf-8
# Reinaldo Chaves ([email protected])
# Este projeto implementa um sistema de Retrieval-Augmented Generation (RAG) conversacional
# usando Streamlit, LangChain, e modelos de linguagem de grande escala - para entrevistar conteúdo de URLs
# Geração de respostas usando o modelo llama-3.2-90b-text-preview da Meta
# Embeddings de texto usando o modelo all-MiniLM-L6-v2 do Hugging Face

# Author: Reinaldo Chaves ([email protected])
# This project implements a conversational Retrieval-Augmented Generation (RAG) system
# using Streamlit, LangChain, and large language models to interview content from URLs
# Response generation uses the llama-3.2-90b-text-preview model from Meta
# Text embeddings use the all-MiniLM-L6-v2 model from Hugging Face
# I am grateful for Krish C Naik's classes (https://www.youtube.com/user/krishnaik06)

# Import necessary libraries
import streamlit as st
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
Expand All @@ -26,10 +28,11 @@
from langchain_groq import ChatGroq
from pydantic import Field

# Configurar o tema para dark
# Configure Streamlit page settings
st.set_page_config(page_title="RAG Q&A Conversacional", layout="wide", initial_sidebar_state="expanded", page_icon="🤖", menu_items=None)

# Aplicar o tema dark com CSS
# Apply dark theme using custom CSS
# This section includes CSS to style various Streamlit components for a dark theme
st.markdown("""
<style>
/* Estilo global */
Expand Down Expand Up @@ -135,7 +138,7 @@
</style>
""", unsafe_allow_html=True)

# Sidebar com orientações
# Sidebar with guidelines
st.sidebar.markdown("<h2 class='orange-title'>Orientações</h2>", unsafe_allow_html=True)
st.sidebar.markdown("""
* Se encontrar erros de processamento, reinicie com F5.
Expand All @@ -162,14 +165,15 @@
Este aplicativo foi desenvolvido por Reinaldo Chaves. Para mais informações, contribuições e feedback, visite o [repositório do projeto no GitHub](https://github.com/reichaves/entrevista_url_llama3).
""")

# Main title and description
st.markdown("<h1 class='yellow-title'>Chatbot com modelos opensource - entrevista URLs ✏️</h1>", unsafe_allow_html=True)
st.write("Insira uma URL e converse com o conteúdo dela - aqui é usado o modelo de LLM llama-3.2-90b-text-preview e a plataforma de embeddings é all-MiniLM-L6-v2")

# Solicitar as chaves de API
# Request API keys from the user
groq_api_key = st.text_input("Insira sua chave de API Groq (depois pressione Enter):", type="password")
huggingface_api_token = st.text_input("Insira seu token de API HuggingFace (depois pressione Enter):", type="password")

# Wrapper personalizado para ChatGroq com rate limiting
# Custom wrapper for ChatGroq with rate limiting
class RateLimitedChatGroq(BaseChatModel):
llm: ChatGroq = Field(default_factory=lambda: ChatGroq())

Expand Down Expand Up @@ -199,34 +203,37 @@ def _generate(self, messages, stop=None, run_manager=None, **kwargs) -> ChatResu
def _llm_type(self):
return "rate_limited_chat_groq"

# Main application logic
if groq_api_key and huggingface_api_token:
# Configurar o token da API do Hugging Face
# Set API tokens as environment variables
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_api_token

# Configurar a chave de API do Groq no ambiente
os.environ["GROQ_API_KEY"] = groq_api_key

# Inicializar o modelo de linguagem e embeddings
# Initialize language model and embeddings
rate_limited_llm = RateLimitedChatGroq(groq_api_key=groq_api_key, model_name="llama-3.2-90b-text-preview", temperature=0)
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")

# Create a session ID for chat history management
session_id = st.text_input("Session ID", value="default_session")

# Initialize session state for storing chat history
if 'store' not in st.session_state:
st.session_state.store = {}

# Get URL input from user
url = st.text_input("Insira a URL para análise:")

if url:
try:
# Fetch and process the webpage content
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')

# Extract text from the webpage
text = soup.get_text(separator='\n', strip=True)

# Limit the text to a certain number of characters (e.g., 50,000)
# Limit the text to a maximum number of characters
max_chars = 50000
if len(text) > max_chars:
text = text[:max_chars]
Expand All @@ -235,16 +242,19 @@ def _llm_type(self):
# Create a Document object
document = Document(page_content=text, metadata={"source": url})

# Split the document into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
splits = text_splitter.split_documents([document])

# Create FAISS vector store
# Create FAISS vector store for efficient similarity search
vectorstore = FAISS.from_documents(splits, embeddings)

st.success(f"Processado {len(splits)} pedaços de documentos (chunks) da URL.")

# Set up the retriever
retriever = vectorstore.as_retriever()

# Define the system prompt for contextualizing questions
contextualize_q_system_prompt = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
Expand All @@ -258,8 +268,10 @@ def _llm_type(self):
("human", "{input}"),
])

# Create a history-aware retriever
history_aware_retriever = create_history_aware_retriever(rate_limited_llm, retriever, contextualize_q_prompt)

# Define the main system prompt for the chatbot
system_prompt = (
"Você é um assistente especializado em analisar conteúdo de páginas web. "
"Sempre coloque no final das respostas: 'Todas as informações devem ser checadas com a(s) fonte(s) original(ais)'"
Expand All @@ -283,27 +295,32 @@ def _llm_type(self):
"Sempre termine as respostas com: 'Todas as informações precisam ser checadas com as fontes das informações'."
)

# Create the question-answering prompt template
qa_prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
])

# Create the question-answering chain
question_answer_chain = create_stuff_documents_chain(rate_limited_llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)

# Function to get or create session history
def get_session_history(session: str) -> BaseChatMessageHistory:
if session not in st.session_state.store:
st.session_state.store[session] = ChatMessageHistory()
return st.session_state.store[session]

# Create a conversational RAG chain with message history
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain, get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer"
)

# Get user input and process the question
user_input = st.text_input("Sua pergunta:")
if user_input:
with st.spinner("Processando sua pergunta..."):
Expand All @@ -313,10 +330,12 @@ def get_session_history(session: str) -> BaseChatMessageHistory:
config={"configurable": {"session_id": session_id}},
)
st.write("Assistente:", response['answer'])


# Display chat history
with st.expander("Ver histórico do chat"):
for message in session_history.messages:
st.write(f"**{message.type}:** {message.content}")
# Error handling
except requests.RequestException as e:
st.error(f"Erro ao acessar a URL: {str(e)}")
except Exception as e:
Expand Down

0 comments on commit 5077cbf

Please sign in to comment.