This repository predicts the genotype and histology of brain metastases
Clone this repository:
git clone https://github.com/rgutsche/ukk_mets.git
Data should be in the following structure:
└── PID_1
├── T1C
│ ├── IM-0305-0001.dcm
│ ├── IM-0305-0002.dcm
│ └── IM-0305-0003.dcm
├── T2
│ ├── IM-0309-0001.dcm
│ ├── IM-0309-0002.dcm
│ └── IM-0309-0003.dcm
├── FLAIR
│ ├── IM-0307-0001.dcm
│ ├── IM-0307-0002.dcm
│ └── IM-0307-0003.dcm
└── PID_2
├── T1C
├── T2
└── FLAIR
└── ...
Please create your segmentation according to the following format:
- Label 1: Contrast enhancing tumor
- Label 2: Non-enhancingT2/FLAIR abnormalities (Edema)
- Label 3: Necrotic like parts
Data should be in the following structure (IMPORTANT! Add tumor segmentation in nifti format!):
└── PID_1
├── IMG_DATA
│ ├── PID_1_0001.nii.gz
│ ├── PID_1_0002.nii.gz
│ ├── PID_1_0003.nii.gz
│ └── PID_1_tum_seg.nii.gz
└── ...
Terminal arguments:
- '-preprocess' must be 'Y' or 'N' if dicom files should be converted to nifti, registered and n4-bias-field corrected
- '-feat_extract' must be 'Y' or 'N' if features should be extracted
- '-age' patient age for the prediction
- '-input_path' must be the path to the patient folder
Example:
main.py -preprocess Y -feat_extract N -age 0 -input_path /Users/robin/data/PID
main.py -preprocess N -feat_extract Y -age patient_age -input_path /Users/robin/data/PID
main.py -preprocess N -feat_extract N -age patient_age -input_path /Users/robin/data/PID
The final output will create feature folder containing radiomics features as Excel file and the prediction with a preview of the tumor and an Excel file with the predictions.
└── PID_1
├── IMG_DATA
├── FEATURES
├── PID_1_features.xlsx
├── PID_1_preview_tumor.png
├── PREDICTION
├── PID_1_prediction.xlsx
└── ...