Skip to content

richardslab/COVID19-sQTLMR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 

Repository files navigation

COVID19-sQTLMR

The codes and results repository for the MR analyses to understand the effect of alternative splicing on COVID-19.

citation: Nakanishi T*†, Willet J*, et al. Alternative splicing in lung influences COVID-19 severity and respiratory diseases. Nat Commun 2023

under scripts

  • 01.makeoutcome.rds.R: scripts to format outcome GWAS dataset to run MR.
  • 02.makeexposure_sQTL_EUR.R: scripts to format exposure GWAS dataset to run MR.
  • 03.MRsQTL_EUR.R: scripts to run MR using sQTL dataset as exposure.
  • 04.MRsQTL_summarise.R: scripts to summarise MR results using sQTL dataset.
  • 05.Fig3.MR.R: scripts to make Fig 3 (forrest plot).
  • 06.B1_MR.R: scripts to run MR for B1 phenotype.
  • 07.coloc.lung.R & 08.coloc.wbc.R : scripts to run colocalization analysis using sQTL dataset.
  • 09.MRsQTL_coloc_sensitivity.R: scripts to format colocalization analysis results.
  • 10.MReQTL_EUR.R: scripts to run MR using eQTL dataset as exposure.
  • 11.coloc.wbc.eQTL.R & 12.coloc.lung.eQTL.R: scripts to run colocalization analysis using eQTL dataset.
  • 13.MReQTL_sensitivity.R: scripts to summarise MR results using eQTL dataset.
  • 14.HPA.scRNAseq.heatmap.R: scripts to make Fig. 4A and 4B.
  • 15.scRNAseq_covid.R: scripts to make Fig. 4C.
  • 16.coloc_otherdiseases.R: scripts to run colocalization for other diseases than COVID-19.

under scripts/violin_sashimi_work

Codes to generate Fig 2 (violin plot) and Supplementary Fig 1 (sashimi plot) were stored. For details, please refer to the Readme file within the folder.