To watch a video of the trained agent click here
In this continuous control environment, the goal is to teach a creature with four legs to walk forward without falling.
You can read more about this environment in the ML-Agents GitHub here.
- Download the environment that matches your operating system:
- Linux: click here
- Mac OSX: click here
- Windows (32-bit): click here
- Windows (64-bit): click here
Then, place the file in the GitHub repository folder, and unzip (or decompress) the file. Next, open Crawler.ipynb
and follow the instructions to learn how to use the Python API to control the agent.
(For AWS) If you'd like to train the agent on AWS (and have not enabled a virtual screen), then please use this link to obtain the "headless" version of the environment. You will not be able to watch the agent without enabling a virtual screen, but you will be able to train the agent. (To watch the agent, you should follow the instructions to enable a virtual screen, and then download the environment for the Linux operating system above.)
- Place the file in the GitHub repository folder, and unzip (or decompress) the file and set the path in the notebook file.
Pytorch, Numpy, Matplotlib, unityagents, Jupyter Notebook