Skip to content

roatienza/Deep-Learning-Experiments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Lecture Notes and Experiments

2023-2024 Version

Revised and expanded

Theory

Topic Note Video Code
Overview PDF - -
Supervised Learning PDF - -
Multilayer Perceptron (MLP) PDF - Notebook
Convolutional Neural Network (CNN) PDF - Notebook
Recurrent Neural Network (RNN) PDF - Notebook
Transformer PDF - Notebook
Mamba PDF - SimpleMamba
Mamba2
Optimization PDF - -
Regularization PDF - -
Detection PDF - -
Segmentation PDF - SAM2
Autoencoder (AE) PDF - AE & Denoising AE
Colorization AE
Variational Autoencoder (VAE) PDF - VAE and CVAE
Generative Adversarial Network (GAN) PDF - DCGAN and CGAN
Intro to Large Language Models (LLMs) PDF - GPT2-TS-train, GPT2-TS-val
LLM Data and Model PDF - GPT2-TS-ft, GPT2-TS-ft-val

Practice

Topic Note Video Code
Development Environment PDF - -
Python PDF - -
Numpy PDF - -
Einsum PDF - Notebook
Einops PDF - Notebook
PyTorch PDF - -
Gradio PDF - Notebook
Llama Chat
Efficiency PDF - Code
PyTorch Lightning PDF - Notebook
Model Packaging & Serving PDF - ONNX Export
ONNX Runtime
TorchScript & TensorRT
PyTriton Yolo Client
PyTriton Yolo Server
Docker PDF = -
HuggingFcae PDF - -

Install

Assuming you already have anaconda or venv, install the required python packages to run the experiments in this version.

pip install -r requirements.txt --upgrade

2022

Coverage:

AI, ML and Deep Learning Note Video Code
    Overview PDF YouTube -
Toolkit
    Development Environment
    and Code Editor
PDF YouTube -
    Python PDF YouTube -
    Numpy PDF YouTube Jupyter
    Einsum PDF YouTube Jupyter
    Einops PDF YouTube Jupyter &
Jupyter (Audio)
    PyTorch & Timm PDF YouTube PyTorch/Timm &
Input Jupyter
    Gradio & Hugging Face PDF YouTube Jupyter
    Weights and Biases PDF YouTube Jupyter
    Hugging Face Accelerator Same as W&B Same as W&B Jupyter &
Python
Datasets & Dataloaders PDF YouTube Jupyter
Supervised Learning PDF YouTube
    PyTorch Lightning PDF YouTube MNIST & KWS
    Keyword Spotting App cd versions/2022/supervised/python &&
python3 kws-infer.py --gui
Building blocks:
MLPs, CNNs, RNNs, Transformers
    MLP PDF YouTube MLP on CIFAR10
    CNN PDF YouTube CNN on CIFAR10
    Transformer PDF YouTube Transformer on CIFAR10
Backpropagation PDF
Optimization PDF
Regularization PDF
Unsupervised Learning Soon
AutoEncoders PDF YouTube AE MNIST
Colorization CIFAR10

Star, Fork, Cite

If you find this work useful, please give it a star, fork, or cite:

@misc{atienza2020dl,
  title={Deep Learning Lecture Notes},
  author={Atienza, Rowel},
  year={2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/roatienza/Deep-Learning-Experiments}},
}