By Xi Wang*, Robin Courant*, Jinglei Shi, Eric Marchand and Marc Christie
CVPR 2023
- Create working environment:
conda create --name jaws -y python=3.10
conda activate jaws
- Install dependencies (adapt it according to your CUDA version):
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
- Use the correct torch-ngp version:
mkdir ./lib
git clone [email protected]:ashawkey/torch-ngp.git
mv torch-ngp torch_ngp
cd torch_ngp
git checkout 3c14ad5d1a8a36f8d36604d1bbd91515fb4416fa
ln -s lib/torch_ngp dir_to/torch_ngp
-
Download
LitePose
checkpoints and puth them inlib/LitePose/ckpt
-
Download example dataset flame_steak_frms_time and put it in
./data
Train NeRF:
python jaws/run.py --config-name train_nerf data_dir=/path/to/dataset xp_name=xp_name datamodule=jaws_dollyzoom.yaml
Launch JAWS
python jaws/run.py --config-name batch_jaws data_dir=path/to/data/dir/flame_steak_frms_time/ xp_name=xp_name jaws.target_dir=data/jaws_dolly_zoom_mask datamodule=jaws_dollyzoom.yaml
Render Images
python jaws/run.py --config-name render_jaws data_dir=path/to/data/dir/flame_steak_frms_time/ xp_name=xp_name jaws.target_dir=data/jaws_dolly_zoom_mask datamodule=jaws_dollyzoom.yaml render_target_dir=path/to/results/dir/final_res_n
@InProceedings{Wang_2023_CVPR,
author = {Wang, Xi and Courant, Robin and Shi, Jinglei and Marchand, Eric and Christie, Marc},
title = {JAWS: Just a Wild Shot for Cinematic Transfer in Neural Radiance Fields},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2023},
}