-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
74 lines (55 loc) · 2.31 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import matplotlib.pyplot as plt
from gaussian_utils.config import CONFIG
from evo.core import sync
from evo.core.units import Unit
from evo.core.trajectory import PoseTrajectory3D
from evo.core.metrics import RPE, PoseRelation, StatisticsType
from evo.tools import file_interface, plot
from typing import Tuple, List
DATASET_TYPE = CONFIG.get('config', 'dataset', fallback='NTU4DRadLM')
DATASET_DIR = CONFIG.get(DATASET_TYPE, 'path')
GT_PATTERN = DATASET_DIR + '/' + CONFIG.get('evaluation', 'gt_pattern')
PRED_PATTERN = CONFIG.get('evaluation', 'pred_pattern')
METHOD = CONFIG.get('evaluation', 'method')
SEQUENCES = [x.strip(' \t') for x in CONFIG.get('evaluation', 'sequences').split(',')]
def get_path(pattern, seq):
x = pattern
x = x.replace('{method}', METHOD)
x = x.replace('{dataset}', DATASET_TYPE)
x = x.replace('{seq}', seq)
return x
def truncate(num, places):
x = 10**places
return int(num*x) / x
def mean_pose_period(traj:PoseTrajectory3D) -> float:
return (traj.timestamps[-1] - traj.timestamps[0]) / traj.num_poses
def rpe_metric(gt, pred, which, delta):
m = RPE(pose_relation=which, delta=delta, delta_unit=Unit.meters, all_pairs=True)
m.process_data((gt, pred))
return m.get_statistic(StatisticsType.mean) / delta
def evaluate(traj_gt:PoseTrajectory3D, traj_pred:PoseTrajectory3D) -> Tuple[float,float]:
gt_raw_len = traj_gt.path_length
diff_gt = mean_pose_period(traj_gt)
diff_pred = mean_pose_period(traj_pred)
traj_gt, traj_pred = sync.associate_trajectories(traj_gt, traj_pred, max_diff=max(diff_gt,diff_pred))
accum_tran = []
accum_rot = []
for distperc in [ 0.1, 0.2, 0.3, 0.4, 0.5 ]:
delta = truncate(distperc*gt_raw_len, 2)
try:
m_tran = rpe_metric(traj_gt, traj_pred, PoseRelation.translation_part, delta)
m_rot = rpe_metric(traj_gt, traj_pred, PoseRelation.rotation_angle_deg, delta)
except:
continue
accum_tran.append(m_tran)
accum_rot.append(m_rot)
accum_tran = np.mean(accum_tran)
accum_rot = np.mean(accum_rot)
return float(accum_tran), float(accum_rot)
for seq in SEQUENCES:
print('Evaluating', seq)
traj_gt = file_interface.read_tum_trajectory_file(get_path(GT_PATTERN,seq))
traj_pred = file_interface.read_tum_trajectory_file(get_path(PRED_PATTERN,seq))
rpe_tran, rpe_rot = evaluate(traj_gt, traj_pred)
print(' RPE', rpe_tran, rpe_rot)