This ROS package contains nodes for detecting people using 2D LiDAR.
See also:
- 2D Laser People Benchmark (including LFE-PPN and LFE-Peaks source code)
- FROG dataset
- Paper (arXiv)
- Ubuntu 22.04 Jammy
- ROS 2 Humble
- CUDA Toolkit 12.1 (tested)
- ONNX Runtime 1.16.3 (tested):
wget https://robotics.upo.es/~famozur/onnx/onnxruntime-gpu_1.16.3_amd64.deb
sudo apt install ./onnxruntime-gpu_1.16.3_amd64.deb
This package contains two nodes: lasermodelhost
(implementing LFE-PPN) and lasermodelhost_peaks
(implementing LFE-Peaks).
Each node can be launched using the following command:
ros2 run upo_laser_people_detector lasermodelhost{_peaks} --ros-args -p model_file:=some_model.onnx -p other_param:=value ...
List of parameters:
model_file
(string): Path to the ONNX file containing model weights. This parameter must be explicitly provided. Please look at the pre-trained models section below.laser_topic
(string): Name of the input ROS topic containingsensor_msgs/LaserScan
messages from the 2D LiDAR. Defaults to/scanfront
.output_topic
(string): Name of the output ROS topic forupo_laser_people_msgs/PersonDetectionList
messages. Defaults todetected_people
(namespace relative).marker_topic
(string): Name of the output ROS topic forvisualization_msgs/MarkerArray
messages for use with RViz. Defaults todetected_people_markers
(namespace relative).scan_near
(float): Minimum distance between the 2D LiDAR and the person, in meters. Defaults to 0.02 m.scan_far
(float): Maximum distance between the 2D LiDAR and the person, in meters. Defaults to 10 m.score_threshold
(float): Score threshold for considering a person detection. Defaults to an appropriate value for each model.person_radius
(float): Radius of the person bounding circles in meters (only for LFE-Peaks). Defaults to 0.4 m.
@misc{frog2023,
author = {Fernando Amodeo and Noé Pérez-Higueras and Luis Merino and Fernando Caballero},
title = {FROG: A new people detection dataset for knee-high 2D range finders},
year = {2023},
eprint = {arXiv:2306.08531},
}
This work is partially funded by the Programa Operativo FEDER Andalucía 2014-2020, Consejería de Economía, Conocimiento y Universidades (DeepBot, PY20_00817) and by the projects NHoA PLEC2021-007868 and NORDIC TED2021-132476B-I00, funded by MCIN/AEI/10.13039/501100011033 and the European Union "NextGenerationEU"/"PRTR".