Open-World Medical Segmentation with Memory-Augmented Transformers π§ π§ͺ
This repository contains the code to reproduce the experiments reported in:
βMedOpenSeg: Open-World Medical Segmentation with Memory-Augmented Transformers.β
Accepted at BMVC 2025 π
# Install PyTorch (recommended version: 2.1.0, adjust CUDA as needed)
pip install torch==2.1.0 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/cu121
# Minimal extra packages
pip install numpy scipy nibabel SimpleITK tqdm monaiExperiments are conducted on:
- AMOS 2022 (multi-organ CT, 15 abdominal organs)
- BTCV (Synapse) (multi-organ abdominal CT)
- MSD β Pancreas (pancreas + tumors)
Training
python trainV.py --config configs/amos.yaml --data_root DATA/AMOS --exp_name amos_osInference (masks + novelty maps)
python inference_V.py --config configs/amos.yaml --checkpoint runs/amos_os/best.ckpt --data_root DATA/AMOS --save_dir outputs/amos_osIf this work helps your research, please cite:
π Thank you for your interest in MedOpenSeg!