Spring Cloud Stream is the solution provided by Spring to build applications connected to shared messaging systems.
It offers an abstraction (the binding) that works the same whatever underneath implementation we use (the binder):
- Apache Kafka
- Rabbit MQ
- Kafka Streams
- Amazon Kinesis
- ...
But what if we need more than one binder in the same application? π€
Not a problem! You can specify multiple binder configurations as documented in Connecting to Multiple Systems
Let's put the theory into practice π οΈ ...
- Goal
- Create the project
- Integration Test
- Spring Cloud Stream binders configuration
- TextProducer
- TextController
- TextProducer implementation
- TextLengthProcessor
- LengthConsumer
- LengthConsumer implementation
- Wiring it all together
- Test this demo
- Run this demo
- See also
You can browse older versions of this repo:
We want to implement this flow:
- User will POST string payloads to /text endpoint
- A KafkaProducer will send these payloads to topic pub.texts as
{ "text" : string }
- A KafkaStreams transformation will consume from topic pub.texts and produce events to topic pub.lengths as
{ "length" : number }
- A KafkaConsumer will consume events from topic pub.lengths and log them to the console
So we will use two Spring Cloud Stream binders:
- Kafka
- Kafka Streams
We use this spring initializr configuration and we add:
- Kafka binder lib spring-cloud-stream-binder-kafka
- Kafka Streams binder lib spring-cloud-stream-binder-kafka-streams
We start writing the following integration test, using:
- Testcontainers and docker-compose with a Kafka container
- JUnit Jupiter OutputCaptureExtension
@Test
fun `should process text lengths`(capturedOutput: CapturedOutput) {
postText("Do")
postText("Or do not")
postText("There is no try")
await().atMost(ONE_MINUTE).untilAsserted {
assertThat(capturedOutput.out).contains("Consumed length [2]")
assertThat(capturedOutput.out).contains("Consumed length [9]")
assertThat(capturedOutput.out).contains("Consumed length [15]")
}
}
This test will obviously fail, but it should work once we have finished our implementation.
Next we configure the two binders:
spring:
application:
name: "spring-cloud-stream-multibinder"
cloud:
function:
definition: textProducer;textLengthProcessor;lengthConsumer
stream:
bindings:
textProducer-out-0:
destination: "${kafka.topic.texts}"
binder: kafka1
textLengthProcessor-in-0:
destination: "${kafka.topic.texts}"
binder: kstream1
textLengthProcessor-out-0:
destination: "${kafka.topic.lengths}"
binder: kstream1
lengthConsumer-in-0:
destination: "${kafka.topic.lengths}"
group: "${spring.application.name}"
binder: kafka1
binders:
kafka1:
type: kafka
environment:
spring.cloud.stream.kafka.binder:
brokers: "${kafka.brokers}"
kstream1:
type: kstream
environment:
spring.cloud.stream.kafka.streams.binder:
applicationId: "${spring.application.name}-KApp"
brokers: "${kafka.brokers}"
kafka:
topic:
texts: "pub.texts"
lengths: "pub.lengths"
brokers: "localhost:9094"
- Spring Cloud Stream will create:
- A Kafka Streams binder connected to localhost:9094
- A Kafka binder connected to localhost:9094
- Following the Spring Cloud Stream functional programming model conventions we should create:
- A bean named textProducer that should implement:
- In Java:
Supplier<Flux<TextEvent>>
interface - In Kotlin:
() -> Flux<TextEvent>
lambda
- In Java:
- A bean named textLengthProcessor that should implement:
- In Java:
Function<KStream<String, TextEvent>, KStream<String, LengthEvent>>
interface - In Kotlin: the same, there is no support for lambdas yet π
- In Java:
- A bean named lengthConsumer that should implement:
- In Java:
Consumer<LengthEvent>
interface - In Kotlin:
(LengthEvent) -> Unit
lambda
- In Java:
- A bean named textProducer that should implement:
π‘ We use different values for the Kafka Streams applicationId and the Kafka Consumers group to avoid undesired behaviors.
π‘ We are using Spring Cloud Stream's default serialization/deserialization of Kotlin data classes to Json. In order for this to work we need to add com.fasterxml.jackson.module:jackson-module-kotlin dependency.
π‘ You can find all the available configuration properties documented in:
We create TextProducer interface to be implemented later:
data class TextEvent(val text: String)
interface TextProducer {
fun produce(event: TextEvent)
}
Once we have the test ...
@WebFluxTest(controllers = [TextController::class])
class TextControllerTest {
@Autowired
lateinit var webClient: WebTestClient
@MockBean
lateinit var textProducer: TextProducer
@Test
fun `should produce text events`() {
val text = "Some awesome text"
webClient.post()
.uri("/text")
.bodyValue(text)
.exchange()
.expectStatus().isOk
verify(textProducer).produce(TextEvent(text))
}
}
... the implementation is easy:
@RestController
class TextController(private val textProducer: TextProducer) {
@PostMapping("/text", consumes = [TEXT_PLAIN_VALUE])
fun text(@RequestBody text: String) {
textProducer.produce(TextEvent(text))
}
}
We implement TextProducer as expected by Spring Cloud Stream conventions like this:
class TextFluxProducer : () -> Flux<TextEvent>, TextProducer {
private val sink = Sinks.many().unicast().onBackpressureBuffer<TextEvent>()
override fun produce(event: TextEvent) {
sink.emitNext(event, FAIL_FAST)
}
override fun invoke() = sink.asFlux()
}
And we can easily test the implementation as follows:
@Test
fun `should produce text events`() {
val producer = TextFluxProducer()
val events = mutableListOf<TextEvent>()
producer().subscribe(events::add)
producer.produce(TextEvent("Well"))
producer.produce(TextEvent("nobody is"))
producer.produce(TextEvent("perfect!"))
assertThat(events).containsExactly(
TextEvent("Well"),
TextEvent("nobody is"),
TextEvent("perfect!")
)
}
We implement the transformation using Kafka Stream's mapValues method:
class TextLengthProcessor : Function<KStream<String, TextEvent>, KStream<String, LengthEvent>> {
override fun apply(input: KStream<String, TextEvent>): KStream<String, LengthEvent> {
return input
.mapValues { event -> LengthEvent(event.text.length) }
}
}
And we can test it using kafka-streams-test-utils:
private const val TOPIC_IN = "topic.in"
private const val TOPIC_OUT = "topic.out"
private const val KEY1 = "key1"
private const val KEY2 = "key2"
private const val KEY3 = "key3"
internal class TextLengthProcessorTest {
private lateinit var topologyTestDriver: TopologyTestDriver
private lateinit var topicIn: TestInputTopic<String, TextEvent>
private lateinit var topicOut: TestOutputTopic<String, LengthEvent>
@BeforeEach
fun beforeEach() {
val stringSerde = Serdes.StringSerde()
val streamsBuilder = StreamsBuilder()
TextLengthProcessor()
.apply(streamsBuilder.stream(TOPIC_IN))
.to(TOPIC_OUT)
val config = Properties().apply {
setProperty(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, stringSerde.javaClass.name)
setProperty(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, JsonSerde::class.java.name)
setProperty(StreamsConfig.APPLICATION_ID_CONFIG, "test")
setProperty(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "test-server")
setProperty(JsonDeserializer.TRUSTED_PACKAGES, "*")
}
val topology = streamsBuilder.build()
topologyTestDriver = TopologyTestDriver(topology, config)
topicIn = topologyTestDriver.createInputTopic(TOPIC_IN, stringSerde.serializer(), JsonSerde(TextEvent::class.java).serializer())
topicOut = topologyTestDriver.createOutputTopic(TOPIC_OUT, stringSerde.deserializer(), JsonSerde(LengthEvent::class.java).deserializer())
}
@AfterEach
fun afterEach() {
topologyTestDriver.close()
}
@Test
fun `should produce length events from text events`() {
topicIn.pipeInput(KEY1, TextEvent("Hello!"))
topicIn.pipeInput(KEY2, TextEvent("How are you?"))
topicIn.pipeInput(KEY3, TextEvent("Bye!"))
assertThat(topicOut.readKeyValuesToList()).containsExactly(
KeyValue(KEY1, LengthEvent(6)),
KeyValue(KEY2, LengthEvent(12)),
KeyValue(KEY3, LengthEvent(4))
)
}
}
We implement LengthStreamConsumer as expected by Spring Cloud Stream conventions like this:
data class LengthEvent(val length: Int)
class LengthStreamConsumer(private val processor: LengthProcessor) : (LengthEvent) -> Unit {
override fun invoke(event: LengthEvent) {
processor.process(event)
}
}
We decouple the final implementation using the interface LengthProcessor:
interface LengthProcessor {
fun process(event: LengthEvent)
}
And we can test everything with this code:
@Test
fun `should consume length events`() {
val lengthProcessor = mock(LengthProcessor::class.java)
val lengthStreamConsumer = LengthStreamConsumer(lengthProcessor)
lengthStreamConsumer(LengthEvent(10))
lengthStreamConsumer(LengthEvent(20))
lengthStreamConsumer(LengthEvent(30))
verify(lengthProcessor).process(LengthEvent(10))
verify(lengthProcessor).process(LengthEvent(20))
verify(lengthProcessor).process(LengthEvent(30))
}
For this demo the implementation just logs the event:
class LengthConsoleProcessor : LengthProcessor {
private val logger = LoggerFactory.getLogger(LengthConsoleProcessor::class.java)
override fun process(event: LengthEvent) {
logger.info("Consumed length [${event.length}]")
}
}
And we can also test it using JUnit Jupiter OutputCaptureExtension:
@ExtendWith(OutputCaptureExtension::class)
internal class LengthConsoleProcessorTest {
@Test
fun `should log consumed length event to console`(capturedOutput: CapturedOutput) {
val lengthConsoleProcessor = LengthConsoleProcessor()
lengthConsoleProcessor.process(LengthEvent(53))
assertThat(capturedOutput.out).contains("Consumed length [53]")
}
}
We only need to create all the required instances naming them accordingly to the binder configuration:
@Configuration
class MyApplicationConfiguration {
@Bean
fun textFluxProducer() = TextFluxProducer()
@Bean
fun textProducer(textProducer: TextFluxProducer): () -> Flux<TextEvent> = textProducer
@Bean
fun textLengthProcessor(): Function<KStream<String, TextEvent>, KStream<String, LengthEvent>> =
TextLengthProcessor()
@Bean
fun lengthConsumer(lengthProcessor: LengthProcessor): (LengthEvent) -> Unit =
LengthStreamConsumer(lengthProcessor)
@Bean
fun lengthConsoleProcessor() = LengthConsoleProcessor()
}
Please note that:
- The three Spring Cloud functions defined in application.yml will be bound by name to the beans textProducer, textLengthProcessor and lengthConsumer.
- For the Kafka binder ones, textProducer and lengthConsumer, we have to define them explicitly as Kotlin lambdas (required by KotlinLambdaToFunctionAutoConfiguration).
- If we were using Java we should use
java.util.function
types:Supplier
andConsumer
.
- If we were using Java we should use
- For the Kafka Stream binder one, textLengthProcessor, we have to define it explicitly as a
java.util.function.Function
, there is no support for Kotlin lambdas yet (check KafkaStreamsFunctionBeanPostProcessor).
- For the Kafka binder ones, textProducer and lengthConsumer, we have to define them explicitly as Kotlin lambdas (required by KotlinLambdaToFunctionAutoConfiguration).
- Beans textFluxProducer and textProducer return the same instance ...
- We need textFluxProducer to inject it whenever a TextProducer interface is needed (the TextController for example).
- We need textProducer to bind it to the textProducer Spring Cloud function required by the Kafka binder.
And that is it, now MyApplicationIntegrationTest should work! π€
Happy coding! π
./gradlew test
docker-compose up -d
./gradlew bootRun
docker-compose down
Use curl or httpie or any other tool you like to POST a /text request:
curl -v -X POST http://localhost:8080/text \
-H "Content-Type: text/plain" \
-d "Toto, I have a feeling we are not in Kansas anymore"
Use kcat to produce/consume to/from Kafka:
# consume
kcat -b localhost:9094 -C -t pub.texts -f '%k %s\n'
kcat -b localhost:9094 -C -t pub.lengths -f '%k %s\n'
# produce
echo 'key1:{"text":"I feel the need - the need for speed!"}' \
| kcat -b localhost:9094 -P -t pub.texts -K: