Skip to content

集成了多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet

Notifications You must be signed in to change notification settings

rpf1019/image_class

 
 

Repository files navigation

图像分类集成以下模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet101、ResNet152、DenseNet,在config.py里面选择使用哪种模型,目前本人亲测,残差网络resnet的效果比较好。

the project apply the following models:

  • VGG16
  • VGG19
  • InceptionV3
  • Xception
  • MobileNet
  • AlexNet
  • LeNet
  • ZF_Net
  • ResNet18
  • ResNet34
  • ResNet50
  • ResNet101
  • ResNet152
  • DenseNet(dismissed this time)

your train or test datasets folder should be:

0,1,2,3 is classes name or folder name,whose path is,and must start with '0'

"training data set folder is:"

/dataset/train/0/cat*.jpg,

/dataset/train/1/cat*.jpg,

/dataset/train/2/cat*.jpg,

/dataset/train/3/cat*.jpg,

"testing data set folder is:"

/dataset/test/0/cat*.jpg,

/dataset/test/1/cat*.jpg,

/dataset/test/2/cat*.jpg,

/dataset/test/3/cat*.jpg,

  • Attentions ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  • classes name ‘0,1,2,3’ or folder name must be number,and must start with '0'

environment

My environment is based on

  • ubuntu16
  • cuda8 (cuda9.0)
  • tensorflow_gpu1.4 (tensorflow_gpu1.10 )
  • keras2.0.8
  • numpy
  • tqdm
  • opencv-python
  • scikit-learn

Install packages

  • pip3 install tensorflow_gpu==1.4
  • pip3 install keras==2.0.8
  • pip3 install numpy
  • pip3 install tqdm
  • pip3 install opencv-python
  • pip3 install scikit-learn

train and predict your model

  • train model: python train.py model_name

  • predict model: python predict.py model_name classes_name

  • (Atttention:classes_name should be 0,1,2,3,........)

Any Questions???

Author email: [email protected]

About

集成了多种图像分类模型: VGG16、VGG19、InceptionV3、Xception、MobileNet、AlexNet、LeNet、ZF_Net、ResNet18、ResNet34、ResNet50、ResNet_101、ResNet_152、DenseNet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%