Skip to content

Commit

Permalink
[Frontend][VLM] Add support for multiple multi-modal items (vllm-proj…
Browse files Browse the repository at this point in the history
  • Loading branch information
ywang96 authored Aug 31, 2024
1 parent 8423aef commit 5231f08
Show file tree
Hide file tree
Showing 8 changed files with 524 additions and 136 deletions.
1 change: 1 addition & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ steps:
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/openai
- pytest -v -s entrypoints/test_chat_utils.py

- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
Expand Down
39 changes: 39 additions & 0 deletions examples/openai_vision_api_client.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,13 @@
"""An example showing how to use vLLM to serve VLMs.
Launch the vLLM server with the following command:
(single image inference with Llava)
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja
(multi-image inference with Phi-3.5-vision-instruct)
vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \
--trust-remote-code --limit-mm-per-prompt image=2
"""
import base64

Expand Down Expand Up @@ -84,3 +90,36 @@ def encode_image_base64_from_url(image_url: str) -> str:

result = chat_completion_from_base64.choices[0].message.content
print(f"Chat completion output:{result}")

# Multi-image input inference
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What are the animals in these images?"
},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
},
],
}],
model=model,
max_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print(f"Chat completion output:{result}")
2 changes: 2 additions & 0 deletions tests/entrypoints/openai/test_serving_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from dataclasses import dataclass
from unittest.mock import MagicMock

from vllm.config import MultiModalConfig
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
Expand All @@ -20,6 +21,7 @@ class MockModelConfig:
max_model_len = 100
tokenizer_revision = None
embedding_mode = False
multimodal_config = MultiModalConfig()


@dataclass
Expand Down
71 changes: 36 additions & 35 deletions tests/entrypoints/openai/test_vision.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,10 @@

from vllm.multimodal.utils import encode_image_base64, fetch_image

from ...utils import VLLM_PATH, RemoteOpenAIServer
from ...utils import RemoteOpenAIServer

MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
LLAVA_CHAT_TEMPLATE = VLLM_PATH / "examples/template_llava.jinja"
assert LLAVA_CHAT_TEMPLATE.exists()
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct"
MAXIMUM_IMAGES = 2

# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
Expand All @@ -24,13 +23,9 @@
@pytest.fixture(scope="module")
def server():
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"4096",
"--enforce-eager",
"--chat-template",
str(LLAVA_CHAT_TEMPLATE),
"--dtype", "bfloat16", "--max-model-len", "4096", "--max-num-seqs",
"5", "--enforce-eager", "--trust-remote-code", "--limit-mm-per-prompt",
f"image={MAXIMUM_IMAGES}"
]

with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
Expand Down Expand Up @@ -84,7 +79,7 @@ async def test_single_chat_session_image(client: openai.AsyncOpenAI,
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=596, total_tokens=606)
completion_tokens=10, prompt_tokens=772, total_tokens=782)

message = choice.message
message = chat_completion.choices[0].message
Expand Down Expand Up @@ -139,7 +134,7 @@ async def test_single_chat_session_image_base64encoded(
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=596, total_tokens=606)
completion_tokens=10, prompt_tokens=772, total_tokens=782)

message = choice.message
message = chat_completion.choices[0].message
Expand Down Expand Up @@ -217,47 +212,53 @@ async def test_chat_streaming_image(client: openai.AsyncOpenAI,

@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_URLS[:i] for i in range(2, len(TEST_IMAGE_URLS))])
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
image_url: str):
image_urls: List[str]):

messages = [{
"role":
"user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
*({
"type": "image_url",
"image_url": {
"url": image_url
}
},
} for image_url in image_urls),
{
"type": "text",
"text": "What's in this image?"
},
],
}]

with pytest.raises(openai.BadRequestError): # test multi-image input
await client.chat.completions.create(
if len(image_urls) > MAXIMUM_IMAGES:
with pytest.raises(openai.BadRequestError): # test multi-image input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)

# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)

# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
Loading

0 comments on commit 5231f08

Please sign in to comment.