Skip to content

Commit

Permalink
[Model] Initialize Phi-3-vision support (vllm-project#4986)
Browse files Browse the repository at this point in the history
  • Loading branch information
Isotr0py authored Jun 18, 2024
1 parent fa9e385 commit daef218
Show file tree
Hide file tree
Showing 8 changed files with 571 additions and 0 deletions.
4 changes: 4 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,10 @@ Alongside each architecture, we include some popular models that use it.
- Phi-3-Small
- :code:`microsoft/Phi-3-small-8k-instruct`, :code:`microsoft/Phi-3-small-128k-instruct`, etc.
-
* - :code:`Phi3VForCausalLM`
- Phi-3-Vision
- :code:`microsoft/Phi-3-vision-128k-instruct`, etc.
-
* - :code:`QWenLMHeadModel`
- Qwen
- :code:`Qwen/Qwen-7B`, :code:`Qwen/Qwen-7B-Chat`, etc.
Expand Down
57 changes: 57 additions & 0 deletions examples/phi3v_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import os
import subprocess

from PIL import Image

from vllm import LLM, SamplingParams
from vllm.multimodal.image import ImagePixelData


def run_phi3v():
model_path = "microsoft/Phi-3-vision-128k-instruct"
llm = LLM(
model=model_path,
trust_remote_code=True,
max_model_len=4096,
image_input_type="pixel_values",
image_token_id=32044,
image_input_shape="1,3,1008,1344",
image_feature_size=1921,
disable_image_processor=False,
)

image = Image.open("images/cherry_blossom.jpg")

# single-image prompt
prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501
prompt = prompt.replace("<|image_1|>", "<|image|>" * 1921 + "<s>")

sampling_params = SamplingParams(temperature=0, max_tokens=64)

outputs = llm.generate({
"prompt": prompt,
"sampling_params": sampling_params,
"multi_modal_data": ImagePixelData(image),
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)


if __name__ == "__main__":
s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/"
local_directory = "images"

# Make sure the local directory exists or create it
os.makedirs(local_directory, exist_ok=True)

# Use AWS CLI to sync the directory, assume anonymous access
subprocess.check_call([
"aws",
"s3",
"sync",
s3_bucket_path,
local_directory,
"--no-sign-request",
])
run_phi3v()
1 change: 1 addition & 0 deletions requirements-test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ peft
requests
ray
sentence-transformers # required for embedding
torchvision # required for the image processor of phi3v

# Benchmarking
aiohttp
Expand Down
3 changes: 3 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,7 @@ def __init__(
model_name: str,
dtype: str = "half",
*,
model_kwargs: Optional[Dict[str, Any]] = None,
is_embedding_model: bool = False,
is_vision_model: bool = False,
) -> None:
Expand All @@ -166,11 +167,13 @@ def __init__(
else:
auto_cls = AutoModelForCausalLM

model_kwargs = model_kwargs if model_kwargs is not None else {}
self.model = self.wrap_device(
auto_cls.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
**model_kwargs,
))

self.tokenizer = AutoTokenizer.from_pretrained(
Expand Down
124 changes: 124 additions & 0 deletions tests/models/test_phi3v.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
from typing import List, Tuple

import pytest
from transformers import AutoTokenizer

from vllm.config import VisionLanguageConfig
from vllm.utils import is_cpu

from ..conftest import IMAGE_FILES

pytestmark = pytest.mark.llava

# The image token is placed before "user" on purpose so that the test can pass
HF_IMAGE_PROMPTS = [
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n",
]

assert len(HF_IMAGE_PROMPTS) == len(IMAGE_FILES)


def iter_phi3v_configs(model_name: str):
image_hw_to_feature_size = {
(1008, 1344): 1921,
}

for (h, w), f in image_hw_to_feature_size.items():
for input_type, input_shape in [
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
]:
yield (model_name,
VisionLanguageConfig(image_input_type=input_type,
image_feature_size=f,
image_token_id=32044,
image_input_shape=input_shape,
image_processor=model_name,
image_processor_revision=None))


model_and_vl_config = [
*iter_phi3v_configs("microsoft/Phi-3-vision-128k-instruct"),
]


def vllm_to_hf_output(vllm_output: Tuple[List[int], str],
vlm_config: VisionLanguageConfig, model_id: str):
"""Sanitize vllm output to be comparable with hf output.
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
It also reduces `output_str` from "<image><image>bla" to "bla".
"""
input_ids, output_str = vllm_output
image_token_id = vlm_config.image_token_id

tokenizer = AutoTokenizer.from_pretrained(model_id)
image_token_str = tokenizer.decode(image_token_id)

hf_input_ids = [
input_id if input_id != image_token_id else 0
for idx, input_id in enumerate(input_ids)
]
hf_output_str = output_str \
.replace(image_token_str * vlm_config.image_feature_size, "") \
.replace("<s>", " ").replace("<|user|>", "") \
.replace("<|end|>\n<|assistant|>", " ")

return hf_input_ids, hf_output_str


target_dtype = "half"
if is_cpu():
target_dtype = "bfloat16"


# TODO: Add test for `tensor_parallel_size` [ref: PR #3883]
# Since we use _attn_implementation="eager" for hf_runner, here is
# numeric difference for longer context and test can't pass
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [8])
def test_models(hf_runner, vllm_runner, hf_images, vllm_images,
model_and_config, dtype: str, max_tokens: int) -> None:
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalData objects and corresponding
vision language config as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
model_id, vlm_config = model_and_config

# use eager mode for hf runner, since phi3_v didn't work with flash_attn
hf_model_kwargs = {"_attn_implementation": "eager"}
with hf_runner(model_id, dtype=dtype,
model_kwargs=hf_model_kwargs) as hf_model:
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS,
max_tokens,
images=hf_images)

vllm_image_prompts = [
p.replace("<|image_1|>",
"<|image|>" * vlm_config.image_feature_size + "<s>")
for p in HF_IMAGE_PROMPTS
]

with vllm_runner(model_id,
max_model_len=2048,
dtype=dtype,
enforce_eager=True,
**vlm_config.as_cli_args_dict()) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
max_tokens,
images=vllm_images)

for i in range(len(HF_IMAGE_PROMPTS)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_to_hf_output(
vllm_outputs[i], vlm_config, model_id)
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
"Phi3ForCausalLM": ("llama", "LlamaForCausalLM"),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
"Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"),
Expand Down
Loading

0 comments on commit daef218

Please sign in to comment.