Skip to content

sagnik1511/Tabular-AutoML

This branch is 10 commits behind JWOC-2023.

Folders and files

NameName
Last commit message
Last commit date
Feb 2, 2022
Feb 1, 2022
Mar 15, 2022
Mar 15, 2022
Jan 13, 2022
Jan 27, 2022
Mar 15, 2022
Mar 15, 2022

Repository files navigation

Tabular-AutoML

Tabular-AutoML

AutoML Package for tabular datasets

Tabular dataset tuning is now hassle free!

Run one liner command and get best tuning and processed dataset in a go.

Python Git

Used Python Libraries :
lightgbm numpy numpy numpy

Installation & Usage


  1. Create a Virtual Environment : Tutorial
  2. Clone the repository.
  3. Open the directory with cmd.
  4. Copy this command in terminal to install dependencies.
pip install -r requirements.txt
  1. Installing the requirements.txt may generate some error due to outdated MS Visual C++ Build. You can fix this problem using this.
  2. First check the parser variable that has to be passed with all customizations.
>>> python -m tab_automl.main --help
usage: main.py [-h] -d  -t  -tf  [-p] [-f] [-spd] [-sfd] [-sm]

automl hyper parameters

optional arguments:
  -h, --help            show this help message and exit
  -d , --data-source    File path
  -t , --problem-type   Problem Type , currently supporting *regression* or *classification*
  -tf , --target-feature
                        Target feature inside the data
  -p , --pre-proc       If data processing is required
  -f , --fet-eng        If feature engineering is required
  -spd , --save-proc-data
                        Save the processed data
  -sfd , --save-fet-data
                        Save the feature engineered data
  -sm , --save-model    Save the best trained model
  1. Now run the command with your custom data, problem type and target feature
>>> # For Regression Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "regression" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

>>> # For Classification Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "classification" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

Contributing Guidelines


  1. Comment on the issue on which you want to work.
  2. If you get assigned, fork the repository.
  3. Create a new branch which should be named on your GitHub user_id , e.g. sagnik1511.
  4. Update the changes on that branch.
  5. Create a PR (Pull request) to the JWOC branch of the parent repository.
  6. The PR title should be named like this [Issue {Issue Number}] Heading of the issue.
  7. Describe the changes you have done with proper reasons.

This branch will hold all updates of JWOC.

Contributors


  1. Sagnik Roy : sagnik1511

If you like the project, do ⭐

Also follow me on GitHub , Kaggle , LinkedIn

Thank You for Visiting :)