Skip to content

sajosam/models

Repository files navigation

Project Title

Machine Learning Models Made Simple

Guide

Classfication model

classifier->
        Scaling-> [train data, test data]
            standard_scaler    
            MinMax
        TrainSplitTest-> [train data, test data, test_size,random_state]
                    split
        classifierSingleModel-> [X_train,y_train,X_test,y_test]
                            model_fit
        classifierHyper-> [x_train,x_test,y_train,y_test]
                    adaBoost, ada_pred 
                    randomforest, rf_pred 
                    gradientboost, gb_pred
                    logistic, l_pred 
                    svm, svm_pred 
                    knn, knn_pred 
                    binomialnb, nb_pred 
                    multinomialnb, multinomialnb_pred 
                    gaussiannb, gaussiannb_pred 
                    decisiontree, decisiontree_pred 
                    xgboost, xgboost_pred 
                    bagging, bagging_pred 
                    extra, extra_pred 
                    ridge, ridge_pred
                                
        Modelling-> [x_train, x_test, y_train, y_test]
                logistic, log_pred
                k_nn, knn_pred 
                svc, svc_pred 
                decision_tree, dt_pred 
                random_forest, rf_pred 
                gradient_boosting, gb_pred 
                XGBOOST, xgb_pred 
                adaBoostC, abc_pred 
                bernoullinb, bnb_pred 
                multinomialnb, mnb_pred 
                bagging, bagging_pred 
                extraTrees, et_pred 
                ridge, r_pred 
                sgd, sgd_pred

Regression model

regression->
    regressionSingleModel-> [X_train,y_train,X_test,y_test]
        model_fit
    RegressionHyper-> [x_train,y_train,x_test,y_test]
        lasso, lasso_pred 
        ridge, ridge_pred 
        elastic, elastic_pred 
        svr, svr_pred 
        knn, knn_pred 
        rf, rf_pred 
        gb, gb_pred 
        lr, lr_pred 
        xgboost, xg_pred 
        sgdregressor, sgd_pred 
        decisiontree, dt_pred 
        ada_boost, ada_pred 
        theilsenregressor, theil_pred 
        ransacregressor, ransac_pred  
        orthogonalmatchingpursuit, ortho_pred 
        lassolars, lasso_pred 
        lars, lars_pred 
        huberregresso,r huber_pred 
        passiveaggressiveregressor, passiveaggressive_pred 
        ardregression, ard_pred 
        bayesianridge, bayesianridge_pred 
        baggingregressor, bagging_pred 
        extratreesregressor, extratrees_pred

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages