Skip to content

Data and code for the paper Abbasi-Rad, S., O’Brien, K., Kelly, S., Vegh, V., Rodell, A., Tesiram, Y., Jin, J., Barth, M., Bollmann, S., 2019. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power using deep convolutional neural networks. arXiv:1911.08118 [physics].

License

Notifications You must be signed in to change notification settings

sbollmannMRI/scout2B1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

Scout2B1

This repository accompanies the paper

Abbasi‐Rad, Shahrokh, Kieran O’Brien, Samuel Kelly, Viktor Vegh, Anders Rodell, Yasvir Tesiram, Jin Jin, Markus Barth, and Steffen Bollmann. ‘Improving FLAIR SAR Efficiency at 7T by Adaptive Tailoring of Adiabatic Pulse Power through Deep Learning Estimation’. Magnetic Resonance in Medicine n/a, no. n/a (2020). https://doi.org/10.1002/mrm.28590.

preprint: Abbasi-Rad, S., O’Brien, K., Kelly, S., Vegh, V., Rodell, A., Tesiram, Y., Jin, J., Barth, M., Bollmann, S., 2019. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power using deep convolutional neural networks. arXiv:1911.08118 [physics]. http://arxiv.org/abs/1911.08118

The data is stored on OSF: https://osf.io/y5cq9/

The code is in an interactive notebook that can be directly executed in the browser on google colab or on a local computer using jupyter: https://colab.research.google.com/drive/1EOg5r30w0NtXJvTFdGhlR0ysGfaEaTpP

About

Data and code for the paper Abbasi-Rad, S., O’Brien, K., Kelly, S., Vegh, V., Rodell, A., Tesiram, Y., Jin, J., Barth, M., Bollmann, S., 2019. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power using deep convolutional neural networks. arXiv:1911.08118 [physics].

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published