-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
started adding function to compute p-values
- Loading branch information
Showing
1 changed file
with
42 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
% Test shuffling algorithm that calculates true MIM and generates MIM null distribution. | ||
%% Run pipeline | ||
clear | ||
eeglab | ||
|
||
eeglabp = fileparts(which('eeglab.m')); | ||
EEG = pop_loadset('filename','eeglab_data_epochs_ica.set','filepath',fullfile(eeglabp, 'sample_data/')); | ||
EEG = pop_resample( EEG, 100); | ||
EEG = pop_epoch( EEG, { }, [-0.5 1.5], 'newname', 'EEG Data epochs epochs', 'epochinfo', 'yes'); | ||
EEG = pop_select( EEG, 'trial',1:30); | ||
[ALLEEG, EEG, CURRENTSET] = eeg_store(ALLEEG, EEG); | ||
eeglab redraw; | ||
|
||
EEG = pop_dipfit_settings( EEG, 'hdmfile',fullfile(eeglabp, 'plugins','dipfit','standard_BEM','standard_vol.mat'), ... | ||
'coordformat','MNI','mrifile',fullfile(eeglabp, 'plugins','dipfit','standard_BEM','standard_mri.mat'),... | ||
'chanfile',fullfile(eeglabp, 'plugins','dipfit','standard_BEM','elec', 'standard_1005.elc'),... | ||
'coord_transform',[0.83215 -15.6287 2.4114 0.081214 0.00093739 -1.5732 1.1742 1.0601 1.1485] ,'chansel',[1:32] ); | ||
|
||
EEG = pop_leadfield(EEG, 'sourcemodel',fullfile(eeglabp,'functions','supportfiles','head_modelColin27_5003_Standard-10-5-Cap339.mat'), ... | ||
'sourcemodel2mni',[0 -24 -45 0 0 -1.5708 1000 1000 1000] ,'downsample',1); | ||
|
||
EEG = pop_roi_activity(EEG, 'leadfield',EEG.dipfit.sourcemodel,'model','LCMV','modelparams',{0.05},'atlas','LORETA-Talairach-BAs','nPCA',3); | ||
|
||
%% Create null distribution | ||
EEG = pop_roi_connect(EEG, 'methods', {'COH', 'MIM'}, 'conn_stats', 'on', 'nshuf', 3); | ||
|
||
% ROI selection | ||
MIM = squeeze(mean(EEG.roi.MIM, 1)); % broadband for now | ||
|
||
% generate p-values by comparing true MIM to null distribution | ||
netMIM = squeeze(mean(MIM, 2)); | ||
MIM_pn = sum(netMIM(:,1) < netMIM(:,2:end),2)./(size(MIM,3)-1); | ||
|
||
% plot | ||
load cm17; | ||
load cortex; | ||
MIM_pn(MIM_pn==0) = 1 / (size(netMIM, 2)-1); % 1 / nshuf | ||
data = -log10(MIM_pn); | ||
% allplots_cortex_BS(cortex_highres, data, [min(data) max(data)], cm17a ,'-log(p)', 0.3); | ||
allplots_cortex_BS(cortex_highres, data, [0 5], cm17a ,'-log(p)', 0.3); | ||
|
||
|