0.4.0
Version 0.4
October, 2018
.. warning::
Version 0.4 is the last version of imbalanced-learn to support Python 2.7
and Python 3.4. Imbalanced-learn 0.5 will require Python 3.5 or higher.
Highlights
This release brings its set of new feature as well as some API changes to
strengthen the foundation of imbalanced-learn.
As new feature, 2 new modules imblearn.keras
and
imblearn.tensorflow
have been added in which imbalanced-learn samplers
can be used to generate balanced mini-batches.
The module imblearn.ensemble
has been consolidated with new classifier:
imblearn.ensemble.BalancedRandomForestClassifier
,
imblearn.ensemble.EasyEnsembleClassifier
,
imblearn.ensemble.RUSBoostClassifier
.
Support for string has been added in
imblearn.over_sampling.RandomOverSampler
and
imblearn.under_sampling.RandomUnderSampler
. In addition, a new class
imblearn.over_sampling.SMOTENC
allows to generate sample with data
sets containing both continuous and categorical features.
The imblearn.over_sampling.SMOTE
has been simplified and break down
to 2 additional classes:
imblearn.over_sampling.SVMSMOTE
and
imblearn.over_sampling.BorderlineSMOTE
.
There is also some changes regarding the API:
the parameter sampling_strategy
has been introduced to replace the
ratio
parameter. In addition, the return_indices
argument has been
deprecated and all samplers will exposed a sample_indices_
whenever this is
possible.