-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
31e2e85
commit 346c383
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
import argparse | ||
import logging | ||
import os.path | ||
|
||
import torch | ||
|
||
from scilpy.io.utils import add_overwrite_arg, assert_inputs_exist, assert_outputs_exist, add_reference_arg | ||
from scilpy.io.streamlines import load_tractogram_with_reference | ||
from dipy.io.streamline import save_tractogram | ||
|
||
from dwi_ml.io_utils import add_logging_arg, add_arg_existing_experiment_path, add_memory_args | ||
from dwi_ml.models.projects.learn2track_model import Learn2TrackModel | ||
from dwi_ml.testing.testers import TesterOneInput | ||
from dwi_ml.testing.visu_loss import \ | ||
prepare_args_visu_loss, pick_a_few, run_visu_save_colored_displacement | ||
from dwi_ml.models.projects.ae_models import ModelAE | ||
from dwi_ml.testing.testers import Tester | ||
from dwi_ml.testing.utils import add_args_testing_subj_hdf5 | ||
|
||
def _build_arg_parser(): | ||
p = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, | ||
description=__doc__) | ||
# Mandatory | ||
# Should only be False for debugging tests. | ||
add_arg_existing_experiment_path(p) | ||
#add_args_testing_subj_hdf5(p) | ||
|
||
p.add_argument('in_tractogram', | ||
help="If set, saves the tractogram with the loss per point " | ||
"as a data per point (color)") | ||
|
||
p.add_argument('out_tractogram', | ||
help="If set, saves the tractogram with the loss per point " | ||
"as a data per point (color)") | ||
|
||
# Options | ||
p.add_argument('--batch_size', type=int) | ||
add_memory_args(p) | ||
|
||
p.add_argument('--pick_at_random', action='store_true') | ||
add_reference_arg(p) | ||
add_overwrite_arg(p) | ||
add_logging_arg(p) | ||
return p | ||
|
||
|
||
def main(): | ||
p = _build_arg_parser() | ||
args = p.parse_args() | ||
|
||
# Loggers | ||
sub_logger_level = args.logging.upper() | ||
if sub_logger_level == 'DEBUG': | ||
sub_logger_level = 'INFO' | ||
logging.getLogger().setLevel(level=args.logging) | ||
|
||
# Verify output names | ||
# Check experiment_path exists and best_model folder exists | ||
#assert_inputs_exist(p, args.hdf5_file) | ||
assert_outputs_exist(p, args, args.out_tractogram) | ||
|
||
# Device | ||
device = (torch.device('cuda') if torch.cuda.is_available() and | ||
args.use_gpu else None) | ||
|
||
# 1. Load model | ||
logging.debug("Loading model.") | ||
model = ModelAE.load_model_from_params_and_state( | ||
args.experiment_path + '/best_model', log_level=sub_logger_level) | ||
#model.set_context('training') | ||
# 2. Compute loss | ||
#tester = TesterOneInput(args.experiment_path, model, args.batch_size, device) | ||
#tester = Tester(args.experiment_path, model, args.batch_size, device) | ||
#sft = tester.load_and_format_data(args.subj_id, args.hdf5_file, args.subset) | ||
|
||
sft = load_tractogram_with_reference(p, args, args.in_tractogram) | ||
sft.to_vox() | ||
sft.to_corner() | ||
bundle = sft.streamlines[0:5000] | ||
|
||
logging.info("Running model to compute loss") | ||
|
||
new_sft = sft.from_sft(bundle, sft) | ||
save_tractogram(new_sft, 'orig_5000.trk') | ||
|
||
with torch.no_grad(): | ||
streamlines = [ | ||
torch.as_tensor(s, dtype=torch.float32, device=device) | ||
for s in bundle] | ||
tmp_outputs = model(streamlines) | ||
#latent = model.encode(streamlines) | ||
|
||
streamlines_output = [tmp_outputs[i, :, :].transpose(0,1).cpu().numpy() for i in range(len(bundle))] | ||
|
||
#print(streamlines_output[0].shape) | ||
new_sft = sft.from_sft(streamlines_output, sft) | ||
save_tractogram(new_sft, args.out_tractogram) | ||
|
||
#latent_output = [s.cpu().numpy() for s in latent] | ||
|
||
|
||
|
||
#outputs, losses = tester.run_model_on_sft( | ||
# sft, uncompress_loss=args.uncompress_loss, | ||
# force_compress_loss=args.force_compress_loss, | ||
# weight_with_angle=args.weight_with_angle) | ||
|
||
if __name__ == '__main__': | ||
main() |