Skip to content
forked from ZCHUHan/CCKT-Det

This is the official implementation for our ICLR 2025 paper "Cyclic Contrastive Knowledge Transfer for Open-Vocabulary Object Detection"

Notifications You must be signed in to change notification settings

seanzhuh/CCKT-Det

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cyclic Contrastive Knowledge Transfer for Open-Vocabulary Object Detection

2024

GitHub Repository |

Overview

We propose CCKT-Det.

Installation

Our models are set under python=3.9, pytorch=2.4.1 . Other versions might be available as well.

  1. Compiling CUDA operators as deformable-detr
  2. Install other packages including open-clip, coco-api, mmdet, timm, mmcv-full

Data

For OVD-COCO setting, Please follow download COCO2017 dataset and follow OVR-CNN to split data into base and novel class.

The data file is organised as following:

coco_path/
├── train2017/
├── val2017/
└── annotations/
├── instances_train2017_base.json
└── instances_val2017_all.json

Run

To train a model using 8 cards

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --with_box_refine --output_dir outputs/

To evaluate a model using 8 cards

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --with_box_refine --output_dir outputs/ --eval --resume outputs/checkpoint.pth

About

This is the official implementation for our ICLR 2025 paper "Cyclic Contrastive Knowledge Transfer for Open-Vocabulary Object Detection"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 82.0%
  • Cuda 16.2%
  • C++ 1.6%
  • Shell 0.2%