Skip to content

PerchIQX - Deep database intelligence for Cloudflare D1 via MCP. Reference implementation of Semantic Intent patterns.

License

semanticintent/semantic-perch-intelligence-mcp

Semantic Perch Intelligence MCP

License: MIT CI TypeScript Node.js Tests

Semantic Intent Hexagonal Architecture PRs Welcome

PerchIQX - Deep Insights. Database Intelligence.

A Model Context Protocol (MCP) server for Cloudflare D1 database introspection. Reference implementation of Semantic Intent patterns demonstrating semantic anchoring, observable properties, and domain-driven design for AI-assisted database development.

📚 Table of Contents

🎯 What Makes This Different

This isn't just another database introspection tool—it's a reference implementation of proven semantic intent patterns:

  • Semantic Anchoring: Schema analysis based on meaning (table purpose, relationships), not technical metrics (row counts, sizes)
  • Observable Properties: Decisions anchored to directly observable schema markers (foreign keys, indexes, constraints)
  • Intent Preservation: Database semantics maintained through all transformations (development → staging → production)
  • Domain Boundaries: Clear semantic ownership (Schema Domain ≠ Query Optimization Domain ≠ MCP Protocol Domain)

Built on research from Semantic Intent as Single Source of Truth, this implementation demonstrates how to build maintainable, AI-friendly database tools that preserve intent.


🚀 Quick Start

Prerequisites

  • Node.js 20.x or higher
  • Cloudflare account with D1 databases
  • Cloudflare API token with D1 access

Installation

  1. Clone the repository

    git clone https://github.com/semanticintent/semantic-perch-intelligence-mcp.git
    cd semantic-perch-intelligence-mcp
  2. Install dependencies

    npm install
  3. Configure environment

    Copy the example configuration:

    cp .env.example .env

    Update .env with your Cloudflare credentials:

    # Cloudflare Configuration
    CLOUDFLARE_ACCOUNT_ID=your_cloudflare_account_id
    CLOUDFLARE_API_TOKEN=your_cloudflare_api_token
    
    # D1 Database Configuration - Development
    D1_DEV_DATABASE_ID=your_dev_database_id
    D1_DEV_DATABASE_NAME=your_dev_database_name
    
    # D1 Database Configuration - Staging (Optional)
    D1_STAGING_DATABASE_ID=your_staging_database_id
    D1_STAGING_DATABASE_NAME=your_staging_database_name
    
    # D1 Database Configuration - Production (Optional)
    D1_PROD_DATABASE_ID=your_prod_database_id
    D1_PROD_DATABASE_NAME=your_prod_database_name

    Note: At least one database environment must be configured.

  4. Build the server

    npm run build
  5. Start the MCP server

    npm start

    Or use the provided shell script:

    ./start-d1-mcp.sh

Get Cloudflare API Token

  1. Go to Cloudflare Dashboard
  2. Navigate to My ProfileAPI Tokens
  3. Click Create Token
  4. Use the Edit Cloudflare Workers template
  5. Add D1 permissions: D1:Read
  6. Copy the token to your .env file

Get D1 Database IDs

# List all your D1 databases
wrangler d1 list

# Get specific database info
wrangler d1 info <database-name>

Copy the database IDs to your .env file.


🛠️ MCP Tools

This server provides 4 comprehensive MCP tools for D1 database introspection:

1. analyze_database_schema

Analyze complete database schema structure with metadata and optional sample data.

Parameters:

  • environment (required): "development" | "staging" | "production"
  • includeSamples (optional, default: true): Include sample data from tables
  • maxSampleRows (optional, default: 5): Maximum rows per table sample

Returns:

  • Complete schema analysis
  • Table structures with columns, types, constraints
  • Indexes and foreign keys
  • Sample data from each table (if enabled)
  • Schema metadata and statistics

Example:

{
  "name": "analyze_database_schema",
  "arguments": {
    "environment": "development",
    "includeSamples": true,
    "maxSampleRows": 5
  }
}

2. get_table_relationships

Extract and analyze foreign key relationships between tables.

Parameters:

  • environment (required): Database environment
  • tableName (optional): Filter relationships for specific table

Returns:

  • Foreign key relationships with cardinality (one-to-many, many-to-one)
  • Referential integrity rules (CASCADE, SET NULL, etc.)
  • Relationship metadata and statistics

Example:

{
  "name": "get_table_relationships",
  "arguments": {
    "environment": "production",
    "tableName": "users"
  }
}

3. validate_database_schema

Validate database schema for common issues and anti-patterns.

Parameters:

  • environment (required): Database environment

Returns:

  • Schema validation results
  • Missing primary keys
  • Foreign keys without indexes
  • Naming convention violations
  • Tables without relationships

Example:

{
  "name": "validate_database_schema",
  "arguments": {
    "environment": "production"
  }
}

4. suggest_database_optimizations

Generate schema optimization recommendations based on structure analysis.

Parameters:

  • environment (required): Database environment

Returns:

  • Prioritized optimization suggestions (high/medium/low)
  • Missing index recommendations
  • Primary key suggestions
  • Schema improvement opportunities
  • Performance optimization tips

Example:

{
  "name": "suggest_database_optimizations",
  "arguments": {
    "environment": "production"
  }
}

🔌 Connect to Claude Desktop

Connect this MCP server to Claude Desktop for AI-assisted database development.

Configuration

  1. Edit Claude Desktop config - Go to Settings → Developer → Edit Config

  2. Add MCP server configuration:

{
  "mcpServers": {
    "semantic-perch": {
      "command": "node",
      "args": [
        "/absolute/path/to/semantic-perch-intelligence-mcp/dist/index.js"
      ],
      "env": {
        "CLOUDFLARE_ACCOUNT_ID": "your_account_id",
        "CLOUDFLARE_API_TOKEN": "your_api_token",
        "D1_DEV_DATABASE_ID": "your_dev_db_id",
        "D1_DEV_DATABASE_NAME": "your_dev_db_name",
        "D1_STAGING_DATABASE_ID": "your_staging_db_id",
        "D1_STAGING_DATABASE_NAME": "your_staging_db_name",
        "D1_PROD_DATABASE_ID": "your_prod_db_id",
        "D1_PROD_DATABASE_NAME": "your_prod_db_name"
      }
    }
  }
}
  1. Restart Claude Desktop

  2. Verify tools are available - You should see 4 D1 tools in Claude's tool list

Usage Example

In Claude Desktop:

"Analyze my production database schema and suggest optimizations for tables with foreign keys"

Claude will use the analyze_database_schema and suggest_database_optimizations tools automatically.


🏗️ Architecture

This project demonstrates Domain-Driven Hexagonal Architecture with clean separation of concerns:

┌─────────────────────────────────────────────────────────┐
│                   Presentation Layer                     │
│              (MCP Server - Protocol Handling)            │
└────────────────────┬────────────────────────────────────┘
                     │
┌────────────────────▼────────────────────────────────────┐
│                  Application Layer                       │
│        (Use Cases - Schema Analysis Orchestration)      │
└────────────────────┬────────────────────────────────────┘
                     │
┌────────────────────▼────────────────────────────────────┐
│                    Domain Layer                          │
│     (Schema Entities, Relationship Logic, Services)     │
│              Pure Business Logic                         │
└────────────────────┬────────────────────────────────────┘
                     │
┌────────────────────▼────────────────────────────────────┐
│                Infrastructure Layer                      │
│       (Cloudflare D1 REST API, HTTP Client)             │
│           Technical Adapters                             │
└─────────────────────────────────────────────────────────┘

Implementation Status

Status: ✅ Hexagonal architecture refactoring complete

Current Structure:

src/
├── domain/              # Business logic (entities, services)
│   ├── entities/        # DatabaseSchema, TableInfo, Column, etc.
│   ├── services/        # SchemaAnalyzer, RelationshipAnalyzer, etc.
│   ├── repositories/    # Port interfaces
│   └── value-objects/   # Environment enum
├── application/         # Use cases and orchestration
│   ├── use-cases/       # AnalyzeSchema, GetRelationships, etc.
│   └── ports/           # Cache provider interface
├── infrastructure/      # External adapters
│   ├── adapters/        # CloudflareD1Repository, Cache
│   ├── config/          # CloudflareConfig, DatabaseConfig
│   └── http/            # CloudflareAPIClient
├── presentation/        # MCP protocol layer
│   └── mcp/             # D1DatabaseMCPServer
└── index.ts             # Composition root (DI)

See ARCHITECTURE.md for detailed design documentation.

Layer Responsibilities

Domain Layer:

  • Database schema entities (Schema, Table, Relationship, Index)
  • Schema analysis business logic
  • Relationship extraction logic
  • Optimization recommendation rules

Application Layer:

  • Orchestrate domain services
  • Execute use cases (AnalyzeSchema, GetRelationships, etc.)
  • Coordinate infrastructure adapters

Infrastructure Layer:

  • Cloudflare D1 REST API integration
  • HTTP client for API calls
  • Cache provider (in-memory)

Presentation Layer:

  • MCP server initialization
  • Tool registration and routing
  • Request/response formatting

Semantic Intent Principles

This codebase follows strict semantic anchoring rules:

  1. Semantic Over Structural

    // ✅ SEMANTIC: Based on observable schema properties
    const needsIndex = table.hasForeignKey() && !table.hasIndexOnForeignKey()
    
    // ❌ STRUCTURAL: Based on technical metrics
    const needsIndex = table.rowCount > 10000 && table.queryCount > 100
  2. Intent Preservation

    // ✅ Environment semantics preserved through transformations
    const schema = await fetchSchema(Environment.PRODUCTION)
    // Schema analysis preserves "production" intent - no overrides
  3. Observable Anchoring

    // ✅ Based on directly observable properties
    const relationships = extractForeignKeys(sqliteMaster)
    
    // ❌ Based on inferred behavior
    const relationships = inferFromQueryPatterns(logs)

See SEMANTIC_ANCHORING_GOVERNANCE.md for complete governance rules.


🧪 Testing

Status: ✅ Comprehensive test suite with 398 tests passing

Test Coverage

  • Domain Layer: 212 tests (entities, services, validation)
  • Infrastructure Layer: 64 tests (D1 adapter, API client, config)
  • Application Layer: 35 tests (use cases, orchestration)
  • Presentation Layer: 13 tests (MCP server, tool routing)
  • Integration: 15 tests (end-to-end flows)
  • Value Objects: 59 tests (Environment, immutability)

Total: 398 tests (all passing ✅)

Running Tests

# Run all tests
npm test

# Watch mode
npm run test:watch

# With UI
npm run test:ui

# Coverage report
npm run test:coverage

Test Framework

  • Vitest: Fast unit testing framework
  • @vitest/coverage-v8: Code coverage reports
  • Mock Strategy: Mock Cloudflare D1 API responses via interface implementations

📖 Learning from This Implementation

This codebase serves as a reference implementation for semantic intent patterns in database tooling.

Key Files to Study

Hexagonal Architecture Implementation:

Reference Documentation:

Related Projects


🤝 Contributing

We welcome contributions! This is a reference implementation, so contributions should maintain semantic intent principles.

How to Contribute

  1. Read the guidelines: CONTRIBUTING.md
  2. Check refactoring plan: D1_MCP_REFACTORING_PLAN.md
  3. Follow the architecture: Maintain layer boundaries and semantic anchoring
  4. Add tests: All changes need comprehensive test coverage
  5. Document intent: Explain WHY, not just WHAT

Contribution Standards

  • ✅ Follow semantic intent patterns
  • ✅ Maintain hexagonal architecture (post-refactoring)
  • ✅ Add comprehensive tests (90%+ coverage target)
  • ✅ Include semantic documentation
  • ✅ Pass all CI checks

Quick Links:

Community


🔒 Security

Security is a top priority. Please review our Security Policy for:

  • API token management best practices
  • What to commit / what to exclude
  • Reporting security vulnerabilities
  • Security checklist for deployment

Found a vulnerability? Email: [email protected]


🔬 Research Foundation

This implementation is based on the research paper "Semantic Intent as Single Source of Truth: Immutable Governance for AI-Assisted Development".

Core Principles Applied

  1. Semantic Over Structural - Schema analysis based on meaning, not metrics
  2. Intent Preservation - Environment semantics maintained through transformations
  3. Observable Anchoring - Decisions based on directly observable schema properties
  4. Immutable Governance - Protect semantic integrity at runtime

Related Resources


📊 Project Roadmap

✅ Phase 0: Initial Implementation (Complete)

  • Monolithic MCP server with 6 tools
  • D1 REST API integration
  • Basic schema analysis

✅ Phase 1: Domain Layer (Complete)

  • 10 domain entities with semantic validation
  • 3 domain services (SchemaAnalyzer, RelationshipAnalyzer, OptimizationService)
  • 212 passing tests

✅ Phase 2: Infrastructure Layer (Complete)

  • CloudflareD1Repository adapter
  • CloudflareAPIClient HTTP client
  • InMemoryCacheProvider
  • 64 passing tests

✅ Phase 3: Application Layer (Complete)

  • 4 use cases (AnalyzeSchema, GetRelationships, ValidateSchema, SuggestOptimizations)
  • Port interfaces (ICloudflareD1Repository, ICacheProvider)
  • 35 passing tests

✅ Phase 4: Presentation Layer (Complete)

  • D1DatabaseMCPServer with 4 MCP tools
  • Request/response DTOs
  • 13 passing tests

✅ Phase 5: Integration & Composition Root (Complete)

  • Dependency injection in index.ts
  • Environment configuration
  • 15 integration tests

✅ Phase 6: CI/CD & Documentation (Complete)

  • TypeScript build verification
  • README updated
  • 398 total tests passing

🎯 Phase 7: Production Readiness (Planned)

  • GitHub Actions CI/CD workflow
  • Dependabot automation
  • Security scanning
  • GitHub repository setup

See D1_MCP_REFACTORING_PLAN.md for detailed roadmap.


📄 License

This project is licensed under the MIT License - see the LICENSE file for details.


🙏 Acknowledgments


This is a reference implementation demonstrating semantic intent patterns for database introspection. Study the code, learn the patterns, and apply them to your own projects. 🏗️

About

PerchIQX - Deep database intelligence for Cloudflare D1 via MCP. Reference implementation of Semantic Intent patterns.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •